• Title/Summary/Keyword: $CO_2$ Emission Reduction

Search Result 624, Processing Time 0.029 seconds

Evaluating Vehicle Emission Reduction (CO, VOC and NOx) Using Real-time Traffic Information (실시간교통정보 이용에 따른 차량의 CO, VOC, NOx 저감효과 평가)

  • Kim, Jun-Hyung;Um, Jung-Sup
    • Journal of Environmental Impact Assessment
    • /
    • v.20 no.2
    • /
    • pp.217-226
    • /
    • 2011
  • This paper was inspired by the fact that Real-time Traffic Information Service could play a key role in reducing incomplete combustion time remarkably since it can provide traffic jam information in real-time basis. Emission characteristics of experimental engines were studied with variable travel distances and speed of car in terms of traffic information provided. 12 Km distance road of Susung district in Daegu is taken as an experimental area to examine this new approach. The emission was tested while the driving was done at 8 AM, 3 PM, 6 PM which represents various traffic conditions. The reduced emission has been measured for a travel distance running at different loads (conventional shortest route and Real-time Traffic Information) and various loads (CO, VOC and NOx) are all inventoried and calculated in terms of existing emission factors. The emission has been shown to reduce linearly with travel distance : carbon monoxide (20.56%), VOC (29.21%), NOx(8.86%).

Quantification of Carbon Reduction Effects of Domestic Wood Products for Valuation of Public Benefit

  • Chang, Yoon-Seong;Kim, Sejong;Kim, Kwang-Mo;Yeo, Hwanmyeong;Shim, Kug-Bo
    • Journal of the Korean Wood Science and Technology
    • /
    • v.46 no.2
    • /
    • pp.202-210
    • /
    • 2018
  • This study was carried out to quantify degree of contribution of harvested wood product (HWP) on mitigation of climate change by valuation of public benefits, environmentally and economically. The potential carbon dioxide emission reduction of HWP was estimated by accounting carbon storage effect and substitution effect. Based on 2014 statistics of Korea Forest Service, domestic HWPs were sorted by two categories, such as wood products produced domestically from domestic and imported roundwood. The wood products were divided into seven items; sawnwood, plywood, particle board, fiberboard (MDF), paper (including pulp), biomass (wood pellet) and other products. The carbon stock of wood products and substitution effects during manufacturing process was evaluated by items. Based on the relevant carbon emission factor and life cycle analysis, the amount of carbon dioxide emission per unit volume on HWP was quantified. The amounts of carbon stock of HWP produced from domestic and from imported roundwood were 3.8 million $tCO_{2eq}$., and 2.6 million $tCO_{2eq}$., respectively. Also, each reduction of carbon emission by substitution effect of HWP produced from domestic and imported roundwood was 3.1 million $tCO_{2eq}$. and 2.1 million $tCO_{2eq}$., respectively. The results of this study, the amount of carbon emission reduction of HWP, can be effectively used as a basic data for promotion of wood utilization to revise and establish new wood utilization promotion policy such as 'forest carbon offset scheme', and 'carbon storage labeling system of HWP'.

Study on the Relationship between CO2, Nuclear, and Renewable Energy Generation in Korea, Japan and Germany (CO2 배출, 원자력에너지, 신재생에너지 발전량과의 관계분석: 한국, 일본, 독일을 중심으로)

  • Yun, Junghye;Kang, Sangmok
    • New & Renewable Energy
    • /
    • v.16 no.4
    • /
    • pp.9-22
    • /
    • 2020
  • This study analyzed the short- and long-term effects of nuclear and renewable energy generation on CO2 emissions in Korea, Japan, and Germany from 1987 to 2016 by using the unit root test, Johansen cointegration test, and ARDL model. The unit root test was performed, and the Johansen cointegration test showed cointegration relationships among variables. In the long run, in Germany, the generation of both nuclear and renewable energy was found to affect CO2 emission reduction, while South Korea's renewable energy generation, including hydropower, increased the emissions. Japan only showed significance in fossil fuels. In the short run, in the three countries, the generation of nuclear and renewable energy, excluding hydropower, affected CO2 emission. However, in Korea and Germany, nuclear and renewable energy generation, respectively, affected CO2 emission reduction. Although the rest are significant, the results showed that they increased CO2 emissions.

Contribution of Advanced or Alternative Process to Carbon-Dioxide Emission Reduction in Olefin Production Plant (올레핀(Olefin) 생산 공정에서 발생하는 이산화탄소 배출 저감을 위한 신기술 적용 효과)

  • Wee, Jung-Ho;Choi, Kyoung-Sik;Kim, Jeong-In;Lee, Sang-Hoon
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.31 no.8
    • /
    • pp.679-689
    • /
    • 2009
  • Light olefins are very important hydrocarbons widely used as the raw materials of the most petrochemicals including plastics and medicines. In addition, the nation's olefin production capacity is regarded as one of the key indicators to predict the nation's economic scale and growth. Steam cracking of naphtha (or called "NCC (Naphtha Cracking Center) technology"), the traditional process to produce light olefins, is one of the most consuming energy processes among the chemical industries. Therefore, this process causes tremendous $CO_2$ emission. To reduce the energy consumption and $CO_2$ emission from NCC process, the present paper, firstly, investigates and analyses some alternative technologies which can be potentially substituted for traditional process. Secondly, applying the alternative technologies to NCC process, their effects such as energy savings, $CO_2$ emission reduction and CER (Certified Emission Reduction) were estimated. It is found that the advanced NCC process can reduce approximately 35% of SEC (Specific Energy Consumption) of traditional NCC process. This effect can lead to the reduction of 3.3 million tons of $CO_2$ and the acquisition of the 128 billion won of CER per year. Catalytic cracking of naphtha technology, which is other alternative processes, can save up to approximately 40% of SEC of traditional NCC process. This value equates to the 3.8 million tons of $CO_2$ mitigation and 147 billion won of CER per year.

Correlation Analysis on the Duration and CO2 Emission Following the Earth-work Equipment Combination (토공장비조합에 따른 공사기간 및 이산화탄소 배출량의 상관성 분석)

  • Kim, Byungsoo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.31 no.4D
    • /
    • pp.603-611
    • /
    • 2011
  • After Kyoto Protocol was adopted for green gas reduction, each nations are stepping up efforts to reduce $CO_2$ of a typical green gas. Construction industry also is trying $CO_2$ reduction with the techniques of two types which are software and hardware techniques. The software technique are Passive Design considered green gas emission and the environment impact assessment by LCA. The hardware techniques are adjustment of equipment system and development of eco- friendly material. But, it is nonexistent that a study related to $CO_2$ emission considered detail process in construction industry. This study analyzed the correlation of equipment combination, $CO_2$ emission and duration by calculate $CO_2$ emission follow to equipment combination on earth-work which is the process emitted most $CO_2$ among railway bedding construction.

Analysis of Greenhouse Gas Emission associated with Clean Energy Agriculture System Development (청정에너지농업시스템 개발에 따른 실증단지의 온실가스배출량 분석)

  • Kim, Tae-Hoon;Yoon, Sung-Yee
    • Korean Journal of Organic Agriculture
    • /
    • v.23 no.4
    • /
    • pp.643-658
    • /
    • 2015
  • This study presents detailed emission of greenhouse gases of using Clean Energy Agriculture System according to a cradle-to-gate life-cycle assessment, including emission from energy use and leak of Biogas. Calculations were done with the PASS software and the covered gases are $CH_4$, $N_2O$ and $CO_2$, Total GHG fluxes of amount to $1719.03kgCO_2/day$, $39.63kgCO_2/day$ (2.31%) are from facility house process, $0.19kgCO_2/day$ (0.01%) are from transport process, $696.72kgCO_2/day$ (40.53%) are from Anaerobic digestion process, $846.61kgCO_2/day$ (49.25%) are from Heating and cooling system, $135.88kgCO_2/day$ (7.90%) are from Fertigation production process. The results suggest that for effective reduction of GHG emissions from Facility house using clean energy. Reduction targets should address both the production process as defined by IPCC sectors and the consumption process. An LCA assessment as presented here could be a basis for such efforts.

Effects of District Energy Supply by Combined Heat and Power Plant on Greenhouse Gas Emission Mitigation (열병합발전을 이용한 집단에너지사업의 온실가스 감축효과)

  • Shin, Kyoung-A;Dong, Jong-In;Kang, Jae-Sung;Im, Yong-Hoon;Kim, Da-Hye
    • Journal of Climate Change Research
    • /
    • v.8 no.3
    • /
    • pp.213-220
    • /
    • 2017
  • The purpose of this study is to analyze effects of Greenhouse Gas (GHG) emission reduction in district energy business mainly based on Combined Heat and Power (CHP) plants. Firstly this paper compares the actual carbon intensity of power production between conventional power plants and district energy plants. To allocate the GHG from CHP plants, two of different methods which were Alternative Generation Method and Power Bonus Method, have been investigated. The carbon intensity of power production in district energy plants ($0.43tonCO_2e/MWh$) was relatively lower than conventional gas-fired power plants ($0.52tonCO_2e/MWh$). Secondly we assessed the cost effectiveness of reduction by district energy sector compared to the other means using TIMES model method. We find that GHG marginal abatement cost of 'expand CHP' scenario (-$134/ton$CO_2$) is even below than renewable energy scenario such as photovoltaic power generation ($87/ton$CO_2$). Finally the GHG emission reduction potential was reviewed on the projected GHG emission emitted when the same amount of energy produced in combination of conventional power plants and individual boilers as substitution of district energy. It showed there were 10.1~41.8% of GHG emission reduction potential in district energy compared to the combination of conventional power plants and individual boilers.

Convergence in Per Capita CO2 Emission by Income Group (국가별 소득수준에 따른 1인당 CO2 배출량 수렴 분석)

  • Cho, Hyangsuk
    • Environmental and Resource Economics Review
    • /
    • v.28 no.1
    • /
    • pp.1-37
    • /
    • 2019
  • This study investigates the convergence in per capita $CO_2$ emission by income group for an unbalanced panel of 152 countries from 1980 to 2013 using beta and sigma convergence model. Absolute beta and sigma convergence differed by $CO_2$ emission reduction policies in each countries. Conditional beta convergence shows that per capita income has a negative effect on growth in per capita $CO_2$ emission. In particular, better-quality institutions and technology accelerated the negative effect of per capita income on the speed of convergence of per capita $CO_2$ emission in high-income countries. For middle-income countries, the growth of income affected the convergence of $CO_2$ emission per capita, but institutional quality has an insignificant impact. On the other hand, improvements in the level of technology have a mitigating effect on the negative impact of income in middle-income and low-income countries, contributing to the increase in $CO_2$ emission.

Decomposition of CO2 Emissions in the Manufacturing Sector : An International Comparative Study for Korea, UK, and USA (제조업 부문의 이산화탄소 배출 요인분해: 한국·영국·미국의 국제비교 연구)

  • Han, Taek Whan;Shin, Wonzoe
    • Environmental and Resource Economics Review
    • /
    • v.16 no.3
    • /
    • pp.723-738
    • /
    • 2007
  • This paper draws some implications from Logarithmic Mean Weight Divisia Method (LMWDM) on the sources of $CO_2$ emission changes in the manufacturing sectors of Korea, UK, and USA. The sources of change in industrial $CO_2$ emission of a country, as manifested by production scale factor, structural factor, and technical factor, summarizes the forces behind the change in $CO_2$ emissions in each country's manufacturing sector. There are three observations. First one is that Korea's emission is increasing while USA and UK are experiencing reduction or stabilization of $CO_2$ emission in the manufacturing sector. Second implication is that the technical factor affecting $CO_2$ emission in Korea does not help much, or even hinder, the reduction of $CO_2$ emissions, comparing to USA and UK. Third one, which is the combined result of the first and the second one, is that Korea's increasing trend in aggregate $CO_2$ emission throughout the periods in consideration is mainly due to the failure in technical progress, or the deterioration in the structure of within subcategories, or both. The policy implications is clear. The obvious prescription is to launch a nation-wide policy drive which can revert these adverse trends.

  • PDF

Process of Community-based Sustainable CO2 Management

  • Park, Jae-Hyun;Hong, Tae-Hoon
    • Journal of Construction Engineering and Project Management
    • /
    • v.1 no.1
    • /
    • pp.11-17
    • /
    • 2011
  • According to the United Nations Framework Convention on Climate Change (UNFCCC), many countries around the world have been concerned with reducing Greenhouse Gas (GHG) emissions. Reducing the level of building energy consumption is particularly important in bringing GHG down. Because of this, many countries including the US and the EU are enforcing energy-related policies. However, these policies are focused on management of single types of buildings such as public buildings and office buildings, instead of management on a national level. Thus, although various policies have been enforced in many countries, $CO_2$ management on a national level is still not an area of focus. Therefore, this study proposed a community-based $CO_2$ management process that allows government-led GHG management. The minimum unit of the community in this study is a plot, and the process consists of three steps. First, the current condition of the GHG emission was identified by plot. Second, based on the identified results, the GHG emission reduction target was distributed per plot by reflecting the weighted value according to (i) the target $CO_2$ reduction in the buildings in the standard year, (ii) region, and (iii) building usage and size. Finally, to achieve the allocated target reduction, building energy management was executed according to the properties of the building located on each plot. It can be expected that the proposed community-based $CO_2$ management process will enable government-level GHG management, through which environment-friendly building construction can be promoted.