Contribution of Advanced or Alternative Process to Carbon-Dioxide Emission Reduction in Olefin Production Plant

올레핀(Olefin) 생산 공정에서 발생하는 이산화탄소 배출 저감을 위한 신기술 적용 효과

  • Wee, Jung-Ho (Department of Environmental Engineering, The Catholic University of Korea) ;
  • Choi, Kyoung-Sik (Department of Environmental Research & Analysis Center, Environmental Management Corporation) ;
  • Kim, Jeong-In (Department of Industrial Economics, Chung Ang University) ;
  • Lee, Sang-Hoon (Department of Environmental Engineering, The Catholic University of Korea)
  • 위정호 (가톨릭대학교 환경공학과) ;
  • 최경식 (환경관리공단 환경분석연구센터) ;
  • 김정인 (중앙대학교 산업경제학과) ;
  • 이상훈 (가톨릭대학교 환경공학과)
  • Received : 2008.10.29
  • Accepted : 2009.07.13
  • Published : 2009.08.31

Abstract

Light olefins are very important hydrocarbons widely used as the raw materials of the most petrochemicals including plastics and medicines. In addition, the nation's olefin production capacity is regarded as one of the key indicators to predict the nation's economic scale and growth. Steam cracking of naphtha (or called "NCC (Naphtha Cracking Center) technology"), the traditional process to produce light olefins, is one of the most consuming energy processes among the chemical industries. Therefore, this process causes tremendous $CO_2$ emission. To reduce the energy consumption and $CO_2$ emission from NCC process, the present paper, firstly, investigates and analyses some alternative technologies which can be potentially substituted for traditional process. Secondly, applying the alternative technologies to NCC process, their effects such as energy savings, $CO_2$ emission reduction and CER (Certified Emission Reduction) were estimated. It is found that the advanced NCC process can reduce approximately 35% of SEC (Specific Energy Consumption) of traditional NCC process. This effect can lead to the reduction of 3.3 million tons of $CO_2$ and the acquisition of the 128 billion won of CER per year. Catalytic cracking of naphtha technology, which is other alternative processes, can save up to approximately 40% of SEC of traditional NCC process. This value equates to the 3.8 million tons of $CO_2$ mitigation and 147 billion won of CER per year.

플라스틱에서부터 의약품에 이르기까지 대부분 일상 제품의 핵심적 기초 원료가 되는 경질올레핀은 한 국가의 경제규모와 성장을 예측할 수 있는 중요한 지표이다. 이러한 경질올레핀을 생산하는 NCC (Naphtha Cracking Center) 기술은 석유 관련 기간산업 중에서 가장 많은 에너지를 소비하는 공정으로 다량의 $CO_2$를 발생 시킨다. 본 연구에서는 다량으로 방출되는 $CO_2$를 감축, 저감시킬 수 있는 새로운 NCC 공정의 기술 수준과 개발 현황 및 기술 적용 가능성을 검토하였으며, 새로운 기술이 적용될 경우 $CO_2$ 저감 효과 및 그에 따른 탄소배출권, 그리고 에너지 절감양 등을 정량적으로 산출 하였다. 그 결과 고급 NCC 기술을 적용하면 기존 NCC 공정의 총 에너지 소비량의 약 35%를 줄일 수 있어 연간 약 330만톤의 $CO_2$ 감축과, 약 1,280억원의 탄소배출권 및 중유 약 152만 kL를 줄일 수 있다. 또한 촉매 접촉 분해 기술을 적용하면 연간 최대 약 380만톤의 $CO_2$를 저감할 수 있고 1,470억원 규모의 탄소배출권 및 약 174만 kL의 중유 소비를 줄 일 수 있다.

Keywords

References

  1. IPCC, Intergovernmental Panel on Climate Change, home page, http://www.ipcc.ch/pdf/assessment-report/ar4/syr/ar4_syr.pdf (2007)
  2. Schneider, M., Andreas, H., and Hoffmann, V. H., 'Understanding the CDM’s contribution to technology transfer,' Energ. Policy, 36(8), 2930-2938(2008) https://doi.org/10.1016/j.enpol.2008.04.009
  3. UNFCCC, The United Nations Climate Change Conference in bali, COP 13 Decisions and Resolutions, Bali Road Map, home page, http://unfccc.int/meetings/cop_13/items/4049.php (2007)
  4. 환경부,'발리 로드맵 채택과 Post Kyoto 협상전략 연구,' 환경부, 지구환경과(2008)
  5. 김재창, 김준모, 박진원, 왕수균, 이관영, 이영무, 이창하, 정석호, 홍원희,' 이산화탄소 포집 및 저장 기술', 청문각(2008)
  6. 위정호, 김정인, 송인승, 송보윤, 최경식, '국내 전력 발전 및산업 부문에서 탄소 포집 및 저장(CCS) 기술을 이용한 이산화탄소 배출 저감,' 대한환경공학회지, 30(9), 961-971(2008)
  7. 에너지경제연구원, '국가 온실가스 배출 통계,' home page, http://www.keei.re.kr/main.nsf/index.html (2009).
  8. Ren, T., Patel, M., and Blok, K.,' Olefins from conventional and heavy feedstocks: Energy use in steam cracking and alternative processes,' Energy, 31(4), 425-451(2006) https://doi.org/10.1016/j.energy.2005.04.001
  9. Wan, J., Wei, Y., Liu, Z., Li, B., Qi, Y., Li, M., Xie, P., Meng, S., He, Y., and Chang, F.,' A ZSM-5-based catalyst for efficient production of light olefins and aromatics from fluidized-bed naphtha catalytic cracking,' Catal. Lett., 124(1-2), 150-156 (2008) https://doi.org/10.1007/s10562-008-9445-1
  10. Cimino, S., Dons , F., Russo, G., and Sanfilippo, D.', Optimization of ethylene production via catalytic partial oxidation of ethane on $ Pt-LaMnO_3 $catalyst,' Catal. Lett., 122(3-4), 228-237(2008) https://doi.org/10.1007/s10562-008-9432-6
  11. Ren, T., Patel, M. K., and Blok, K., 'Steam cracking and methane to olefins: Energy use, $CO_2$ emissions and production costs,' Energy, 33(5), 817-833(2008)
  12. Ouyang, Z., Guo, Z., Duan, N., and Qiao, Q.', Experimental study on coke and heavy oil co-conversion process for production of light olefins and synthesis gas,' Energ. Convers. Manage., 48(9), 2439-2446(2007) https://doi.org/10.1016/j.enconman.2007.04.009
  13. Van Goethem, M. W. M., Barendregt, S., Grievink, J., Moulijn, J. A. and Verheijen, P. J. T., 'Towards synthesis of an optimal thermal cracking reactor,'Chem. Eng. Res. Des., 86(7), 703- 712(2008) https://doi.org/10.1016/j.cherd.2008.03.020
  14. Focus on Catalysts, 'Consider new catalytic routes for olefins production,' Focus on Catalysts, 2008(6), 6-7(2008).
  15. Hayim, A., H., 'Cracking of naphtha range alkanes and naphthenes over zeolites,' Stud. Surf. Sci. Catal., 170, 1244-1251(2007). https://doi.org/10.1016/S0167-2991(07)80984-0
  16. Chen, X., and Yan, Y., 'Study on the technology of thermal cracking of paraffin to alpha olefins,'J. Anal. Appl. Pyrol., 81(1), 106- 112(2008) https://doi.org/10.1016/j.jaap.2007.09.009
  17. Neelis, M. L., and Pouwelse, J. W., 'Towards consistent and reliable Dutch and international energy statistics for the chemical industry,' Energ. Policy, 36(7), 2719-2733(2008) https://doi.org/10.1016/j.enpol.2008.03.024
  18. Gao, L. L., and Meng, X. J.,' Advances in catalytic pyrolysis of hydrocarbons,' Petrol. Sci. Technol., 23(3-4), 243-255(2005) https://doi.org/10.1081/LFT-200028279
  19. Corma, A., Melo, F. V., Sauvanaud, L., and Ortega, F.,' Light cracked naphtha processing: Controlling chemistry for maximum propylene production,'Catal. Today, 107-108(30), 699-706 (2005) https://doi.org/10.1016/j.cattod.2005.07.109
  20. Plotkin, J. S.,' The changing dynamics of olefin supply/demand, ' Catal. Today, 106(1-4), 10-14(2005) https://doi.org/10.1016/j.cattod.2005.07.174
  21. Focus on Catalysts, 'Asahi Kasei takes catalytic cracking technology to industrial level,' Focus on Catalysts, 2006(11), 3(2006)
  22. Focus on Catalysts, 'Maruzen and AIST developing catalytic cracking for naphtha,' Focus on Catalysts, 2007(3), 6(2007)
  23. Focus on Catalysts, 'Catalytic cracking for olefins gaining importance in Japan,'Focus on Catalysts, 2006(10), 6(2006)
  24. Focus on Catalysts, 'Combined oxydehydrogenation and catalytic cracking,' Focus on Catalysts, 2007(1), 7(2008)
  25. 박용기, 전종열, 한상윤, 김정리, 이철위, '촉매-크래킹에 의한나프타로부터 경질 올레핀 제조 기술,' 화학공학, 41(5), 549-557(2003)
  26. Jeong, S. M., and Chae, J. H.,' Catalytic pyrolysis of naphtha on the KVO3 based catalyst,' Catal. Today, 74(3-4), 257-264 (2002) https://doi.org/10.1016/S0920-5861(02)00035-4
  27. Gang Wang, G., Xu, C. and Gao, J., 'Study of cracking FCC naphtha in a secondary riser of the FCC unit for maximum propylene production,' Fuel Process. Technol., 89(9), 864-873 (2008) https://doi.org/10.1016/j.fuproc.2008.02.007
  28. CMAI, Chemical Market Associates, Inc., World light olefins analysis, home page, http://www.cmaiglobal.com/WorldAnalysis/ wloabook.aspx (2006)
  29. Hydrocarbon-processing. Refining processes, home page, www.hydrocarbonprocessing.com (2002)
  30. IPPC; Integrated pollution prevention and control, Large Volume Organic Chemical Industry, Lower olefins process BREF, home page, http://eippcb.jrc.es/reference/lvoc.html (2002)
  31. 한국석유화학공업협회, home page, http://www.kpia.or.kr/index.html (2004)
  32. EBN 화학정보'증설∙M&A 규모의 경제 실현한다 (상),' 126, (2007), EBN 화학정보 home page, http://chem.ebn.co.kr (2007)
  33. Yeochon NCC Co., home page, http://www.yncc.co.kr
  34. Samsung Total Petrochemicals Co., home page, http://www. samsungtotal.com
  35. SK Energy Co., home page, http://www.skenergy.com.
  36. Honam Petrochemical Co., home page, http://www.hpc.co.kr
  37. LG Chem., home page, http://www.lgchem.co.kr
  38. Lotte Daesan Petrochemical Co., home page, http://www.lottelpc.com
  39. Global ethylene outlook, Petrochemical Market Dynamics: Olefins, home page, http://www.chemsystems.com/about/cs/ news/items/Olefins%20Market%20Dynamics.cfm (2007)
  40. EBN 화학정보', 석화 메이저 영향력 더욱 세진다.'153, (2008), EBN 화학정보 home page, http://chem.ebn.co.kr (2008)
  41. O’Connor, P.,' Chapter 15 Catalytic cracking: The Future of an Evolving Process,' Stud. Surf. Sci. Catal., 166, 227-251(2007) https://doi.org/10.1016/S0167-2991(07)80198-4
  42. Chemical Week, 'LG develops catalytic naphtha cracking process,'Chemical Week, 2002
  43. Yoshimura, Y., Murata, K. and Mizukami, F., 'Catalytic cracking of naphtha to light olefins,' Catal. Surv. Jpn., 2(4), 157-169(2001)
  44. Han, S. S., Kim, J. N., Lee, C. W. and Park, Y. K.,' Catalytic cracking of heavy naphtha and olefin separation in atmospheric temperature,'Advanced Chemical Technology Division, KRICT Co., Seoul, Korea (2002). (See also:www.krict.re.kr)
  45. Point Carbon EUA OTC assessment, home page, www. pointcarbon.com (2008)