• Title/Summary/Keyword: $CO_2$ 저감

Search Result 942, Processing Time 0.038 seconds

Improvement of Post-combustion CO2 Capture Process using Mechanical Vapor Recompression (기기적 증기 재압축 시스템을 적용한 연소 후 이산화탄소 포집공정 개선 연구)

  • Jeong, Yeong Su;Jung, Jaeheum;Han, Chonghun
    • Journal of the Korean Institute of Gas
    • /
    • v.20 no.1
    • /
    • pp.1-6
    • /
    • 2016
  • In order to reduce the anthropogenic emission of greenhouse gases, CCS technology has emerged as the most promising and practical solution. Among CCS technology, post-combustion $CO_2$ capture is known as the most mature and effective process to remove $CO_2$ from power plant, but its energy consumption for chemical solvent regeneration still remains as an obstacle for commercialization. In this study, a process alternative integrating $CO_2$ capture with compression process is proposed which not only reduces the amount of thermal energy required for solvent regeneration but also produces $CO_2$ at an elevated pressure.

Material Properties and Shrinkage Crack Resistance of Concrete Produced with Fluorine-Silicate Hybrid Type Crack Reducing Agent (불소-실리카 복합형 균열저감제가 첨가된 콘크리트의 재료 특성과 수축균열 저항성)

  • Lee, Man-Ik;Park, Jong-Hwa;Nam, Jae-Hyun;Kim, Do-Su;Kim, Jae-On
    • Journal of the Korea Concrete Institute
    • /
    • v.18 no.4 s.94
    • /
    • pp.553-558
    • /
    • 2006
  • In this study, fluorine-silicate hybrid type crack reducing agent(FS) consisted of fluorine and silicate compounds applied to concrete mix(specification : 25-30-18) between 0.5% and 2.0% at intervals of 0.5% based on cement weight. Experiments for material properties of concrete such as slump, air content and bleeding with elapsed time were performed. Experiment and elucidation for shrinkage crack resistance as well as adiabatic hydration temperature were also carried out. It was appeared that FS addition contributed to lower bleeding and hydration temperature without disturbance of fresh properties of concrete such as slump and air content compared to non-added concrete. Especially, shrinkage crack resistance of concrete resulted from plastic and drying shrinkage could be effectively reduced by the addition of FS ranging from 1.0% to 1.5%.

Status and Perspective of Biomass Co-firing to Pulverized Coal Power Plants (미분탄 석탄화력발전에서의 바이오매스 혼소 동향 및 전망)

  • Yang, Won
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.2 no.4
    • /
    • pp.525-529
    • /
    • 2016
  • Biomass co-firing to existing thermal power plants is one of the most economical and efficient way to reduce $CO_2$ emission from the plant. There are several methods of co-firing and it can be categorized into (1) Parallel co-firing, (2) Indirect co-firing, and (3) Direct co-firing. Parallel co-firing is the most expensive way to high-ratio co-firing because it requires biomass dedicated boiler. Direct co-firing is widely used because it does not need high capital cost compared with the other two methods. Regarding the direct co-firing, it can be classified into three methods- Method 1 does not need retrofit of the facilities because it uses existing coal mills for pulverizing biomass fuels. In this case high-ratio co-firing cannot be achieved because of poor grindability of biomass fuels. Method 2 needs biomass-dedicated mills and revision of fuel streams for the combustion system, and Method 3 needs additional retrofit of the boiler as well as biomass mills. It can achieve highest share of the biomass co-firing compared with other two methods. In Korea, many coal power plants have been adopting Method 1 for coping with RPS(Renewable portfolio standards). Higher co-firing ratio (> 5% thermal share) has not been considered in Korean power plants due to policy of limitation in biomass co-firing for securing REC(Renewable Energy Certificate). On the other hand, higher-share co-firing of biomass is widely used in Europe and US using biomass dedicated mills, following their policy to enhance utilization of renewable energy in those countries. Technical problems which can be caused by increasing share of the biomass in coal power plants are summarized and discussed in this report. $CO_2$ abatement will become more and more critical issues for coal power plants since Paris agreement(2015) and demand of higher share of biomass in the coal power plants will be rapidly increased in Korea as well. Torrefaction of the biomass can be one of the best options because torrefied biomass has higher heating value and grindability than other biomass fuels. Perspective of the biomass torrefaction for co-firing is discussed, and economic feasibility of biomass torrefaction will be crucial for implementation of this technology.

Potential of Thermal Stratification and Partial Fuel Stratification for Reducing Pressure Rise Rate in HCCI Engines (HCCI 기관에 있어서의 층상 흡기를 통한 압력 상승률 저감에 대한 단위반응 수치 해석)

  • Lim, Ock-Taeck
    • Journal of the Korean Institute of Gas
    • /
    • v.13 no.6
    • /
    • pp.21-28
    • /
    • 2009
  • The purpose of this study is to gain a better understanding of the effects of thermal stratification and partial fuel stratification on reducing the pressure-rise rate and emission in HCCI combustion. The engine is fueled with Di-Methyl Ether(DME) which has unique 2-stage heat release. Computational work is conducted with multi-zones model and detailed chemical reaction scheme. Calculation result shows that wider thermal stratification and partial fuel stratification prolong combustion duration and reduce pressure rise rate. But too wide partial fuel stratification increases CO and NOx concentration in exhaust gas, and decreases combustion efficiency.

  • PDF

A Study on the Characteristic of Floating Base Plate due to Plate Shape (팽이기초의 형상에 따른 특성 분석)

  • Lee, Song;Jeong, Dae-Yeol;Jung, Hyo-Kwon;Lee, Moo-Cheol
    • Journal of the Korean Geotechnical Society
    • /
    • v.24 no.2
    • /
    • pp.15-25
    • /
    • 2008
  • A soft ground improvement method is used for structures which are constructed on soft ground to decrease settlement and Increase bearing capacity. The Floating Base Plate has been developed for such purposes. In this study, the load-settlement characteristics were investigated by numerical analysis on various Floating Base Plate shapes to select an optimum shape, different from the conventional shape. The selected optimum shape was used to perform plate bearing test and numerical simulations. It was found that the Floating Base Plate is very effective In reducing the settlement and increasing the bearing capacity.

Simultaneous Removal of SOx and NOx in Flue Gas of Oxy-fuel Combustion by Direct Contact Condenser (직접접촉식 응축기를 통한 가압순산소 연소 배가스 내 SOx, NOx 동시저감 연구)

  • Choi, Solbi;Mock, Chinsung;Yang, Won;Ryu, Changkook;Choi, Seuk-Cheon
    • Clean Technology
    • /
    • v.25 no.3
    • /
    • pp.245-255
    • /
    • 2019
  • Pressurized oxy-fuel combustion is a promising technology for $CO_2$ capture with a benefit of improving power plant efficiency compared with atmospheric oxy-fuel combustion. Prior to $CO_2$ compression in this process, a flue gas condenser (FGC) is used to remove $H_2O$ while recovering the latent heat. At the same time, the FGC has a potential for high-efficiency removal of $SO_x$ and $NO_x$ by exploiting their good solubility in water. In this study, experiments were carried out in a lab-scale, direct contact FGC under different pressures varying between 1 and 20 bar to evaluate the removal efficiency of $SO_2$ and $NO_x$ for individual gases and their mixture. In the tests for individual gases, 20% and 76% of $NO_x$ was removed at 1 bar and 10 bar, respectively. Even higher removal efficiencies were achieved for $SO_2$, and also these were maintained for longer as the pressure increased. In the tests for $SO_2$ and $NO_x$ mixture, the removal efficiency of $NO_x$ increased from 13% at 1 bar to 56% at 20 bar because of higher solubility at elevated pressures. $SO_2$ in the mixture was initially dissolved almost completely and then increased by 1,219 ppm at 1 bar and by 165 ppm at 20 bar. Overall, the removal efficiency of $SO_2$ and $NO_x$ was increased at elevated pressures, but it was lower in the mixture compared with individual gases at identical conditions because of a lower pH and associated chemical reactions in water.

Numerical Study on the Dissolution Behavior of $CO_2$ Hydrate for Global Warming Mitigation (지구온난화 저감을 위한 이산화탄소 하이드레이트 용해거동에 대한 수치적 연구)

  • Kim, Nam-Jin;Seo, Hyang-Min;Chun, Won-Gee
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2006.11a
    • /
    • pp.66-69
    • /
    • 2006
  • The idea of $CO_2$ sequestration in the ocean is proposed to be an effective mitigation strategy to counteract potential global warming due to the greenhouse effect Therefore, in the present study, calculations of the dissolution behavior of $CO_2$ hydrate when liquid carbon dioxide is released at 1,000m and 1,500m in depth are performed. The results show the liquid $CO_2$ injected in the ocean becomes $CO_2$ bubble at between 350m and 500m in depth, and the injection from a moving ship is a more effective method of dissolution than through a fixed pipeline. It so also noted that the ultimate plume generated from $CO_2$ bubbles repeats expansion and shrinking due to the peel ins from a fixed pipeline.

  • PDF

The Strategies of Transport Demand Management to Decrease the Greenhouse Gases in Transportation Part (교통부문 온실가스 배출량 저감을 위한 교통수요관리 방안 전략 연구)

  • Jeong, Do-Yeong;Yun, Jang-Ho;Park, Sang-U;Kim, Ju-Yeong
    • Journal of Korean Society of Transportation
    • /
    • v.29 no.1
    • /
    • pp.29-38
    • /
    • 2011
  • The growing amount of using the fossil fuel is bringing about environmentally, economically serious problems like as global warming. To solve the problems, the international society has begun to decrease greenhouse gases through the international agreement like as the climate change convention. In South of Korea, it was presented practical goal of Green Development try to decrease greenhouse, which is the future 60 years vision. And, it contains the strategies of Green Development and 5th Plan of Green Development. Nowadays, the government accepted the active alternative scenario 3, which is the goal of 4% decrease in greenhouse gases until 2020's, presented by Presidential Committee on Green Growth. This study established the strategies of Transport Demand Management to decrease the greenhouse gases in transportation part, and then we measured the effect of them. As a result, if it takes effect the aggressive strategies annually, it will cut greenhouse gas pollution by 3.1%, which is 7,590,000t$CO_2eq$, in transportation part. So, we can expect that it would be the effective policy tool to achieve the goal of government, which is the Green Development, if it controls the strategies of TDM effectively by the political needs.

CO2 Emissions Evaluation for Steel Reinforced Concrete Columns Based on the Optimal Structural Design (최적구조설계를 이용한 SRC 기둥의 CO2 배출량 평가)

  • Choi, Se Woon;Jeon, Ji Hye;Lee, Hwanyoung;Kim, Yousok;Park, Hyo Seon
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.26 no.5
    • /
    • pp.335-342
    • /
    • 2013
  • Since the seriousness of environmental pollution came to the fore recently, various efforts have been made globally for the reduction of the environmental load. In particular, in the field of construction, an industry responsible for a considerable amount of pollution, studies have been actively conducted to reduce $CO_2$ emissions and energy consumption. However, most conventional research about pollution as it relates to construction is focused on the maintenance stages where $CO_2$ emissions are the greatest. Research related to the design stage is in its infancy, as it has only been conducted thus far on steel buildings and RC buildings. In fact, in order to achieve environmentally friendly construction considering the Life Cycle Assessment(LCA), the building design should be derived to reduce the $CO_2$ emissions from the early building design stage, and structural engineers should be able to suggest a design plan considering its environmental friendliness. In this study, optimal structural design method for steel reinforced concrete(SRC) columns considering $CO_2$ emissions is presented. The trends of $CO_2$ emissions in SRC columns according to the variations of steel shapes, concrete strengths and loads are investigated.

PCM mixed the amount of Thermal Conductivity of Cement mortar Experimental Study on the effect. (PCM 혼입량이 시멘트 모르타르의 열전도율에 미치는 영향에 관한 실험적 연구)

  • Jeong, You-Gun;Kim, Bo-Hyun;Lee, Han-Seung
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2011.11a
    • /
    • pp.245-246
    • /
    • 2011
  • In recent research in this emerging and latent heat storage material features an innovative temperature - controlled Phase Change Materials to evaluate the superior thermal performance would like to calculate the thermal conductivity. Specified in KS F 4040 test specimen dimensions were equivalent in specifications, test methods according to KS L 9016 was an experiment in progress. As a result, the thermal conductivity of plain cement mortar mixed with more PCM came out with low thermal conductivity of mortar, thermal performance was excellent.

  • PDF