DOI QR코드

DOI QR Code

기기적 증기 재압축 시스템을 적용한 연소 후 이산화탄소 포집공정 개선 연구

Improvement of Post-combustion CO2 Capture Process using Mechanical Vapor Recompression

  • 정영수 (서울대학교 화학생물공학부) ;
  • 정재흠 (서울대학교 화학생물공학부) ;
  • 한종훈 (서울대학교 화학생물공학부)
  • Jeong, Yeong Su (School of Chemical and Biological Engineering, Seoul National University) ;
  • Jung, Jaeheum (School of Chemical and Biological Engineering, Seoul National University) ;
  • Han, Chonghun (School of Chemical and Biological Engineering, Seoul National University)
  • 투고 : 2015.12.07
  • 심사 : 2016.02.02
  • 발행 : 2016.02.29

초록

기후변화의 가장 큰 원인 중 하나로 지목되는 이산화탄소의 배출량을 절감하기 위해 제안된 Carbon Capture and Storage (CCS) 전체공정의 에너지 및 비용저감이 시급한 현 시점에서 효율적인 연계공정의 도출이 중요하며 본 연구에서는 연소 후 습식아민 공정을 이용한 포집공정과 압축공정의 간의 연계를 통해 에너지를 저감할 수 있는 방법을 제안한다. 이는 기기적 증기 재압축 시스템 을 적용하여 압축기에 사용되는 전기에너지를 열에너지의 형태로 변환함으로써 포집공정에 필요한 리보일러의 에너지 사용량을 감소시키는 방법이다. 본 공정개선안은 압축기에 필요한 추가적인 투자비용 및 전기에너지를 고려하더라도 고압의 이산화탄소를 생산함과 동시에 전체적인 에너지 사용량을 절감시키는 장점이 있다. 또한 본 연구에서는 실제 Test Bed의 운전 결과를 통한 모델을 활용함으로써 보다 신뢰성 있는 절감 효과를 제안하고자 한다.

In order to reduce the anthropogenic emission of greenhouse gases, CCS technology has emerged as the most promising and practical solution. Among CCS technology, post-combustion $CO_2$ capture is known as the most mature and effective process to remove $CO_2$ from power plant, but its energy consumption for chemical solvent regeneration still remains as an obstacle for commercialization. In this study, a process alternative integrating $CO_2$ capture with compression process is proposed which not only reduces the amount of thermal energy required for solvent regeneration but also produces $CO_2$ at an elevated pressure.

키워드

참고문헌

  1. Yu, C. H., Huang, C. H., and Tan, C. S., "A review of $CO_2$ capture by absorption and adsorption" Aerosol and Air Quality Research, 12, 745-769, (2012)
  2. Notz, R., Mangalapally, H.P., and Hasse, H., "Post combustion $CO_2$ capture by reactive absorption: Pilot plant description and results of systematic studies with MEA", International journal of Greenhouse Gas Control, 6, 84-112, (2012) https://doi.org/10.1016/j.ijggc.2011.11.004
  3. Cousins, A., Wardhaugh, L.T., and Feron, P.H.M., "A survey of process flow sheet modifications for energy efficient $CO_2$ capture from flue gases using chemical absorption", International journal of Greenhouse Gas Control, 5(4), 605-619, (2011) https://doi.org/10.1016/j.ijggc.2011.01.002
  4. Abu-Zahra, M. R., Schneiders, L. H., Niederer, J. P. Feron, P. H., and Versteeg, G. F., "$CO_2$ capture from power plants: Part I. A parametric study of the technical performance based on monoethanolamine", International Journal of Greenhouse gas control, 1(1), 37-46, (2007) https://doi.org/10.1016/S1750-5836(06)00007-7
  5. Le Moullec, Y., and Kanniche, M., "Screening of flowsheet modifications for an efficient monoethanolamine (MEA) based post-combustion $CO_2$ capture", International Journal of Greenhouse Gas Control., 5(4), 727-740, (2011) https://doi.org/10.1016/j.ijggc.2011.03.004
  6. Ahn, H., Luberti, M., Liu, Z., and Brandani, S., "Process configuration studies of the amine capture process for coal-fired power plants", International Journal of Greenhouse Gas Control, 16, 29-40, (2013) https://doi.org/10.1016/j.ijggc.2013.03.002
  7. Plaza, J. M., Van Wagener, D., and Rochelle, G. T., "Modeling $CO_2$ capture with aqueous monoethanolamine", International Journal of Greenhouse Gas Control, 4(2), 161-166, (2010) https://doi.org/10.1016/j.ijggc.2009.09.017
  8. Coutinho, J.A., Kontogeorgis, G.M., Stenby, E.H. Binary interaction parameters for nonpolar systems with cubic equations of state: a theoretical approach 1.$CO_2$/hydrocarbons using SRK equation of state. Fluid Phase Equilib. 102(1), 31-60, (1994) https://doi.org/10.1016/0378-3812(94)87090-X
  9. Jeong, Y. S., Jung, J., Lee, U., Yang, C., and Han C., "Techno-economic analysis of mechanical vapor recompression for process integration of post-combustion $CO_2$ capture with downstream compression", Chemical Engineering Research and Design, 104:247-55, (2015) https://doi.org/10.1016/j.cherd.2015.08.016
  10. Jassim, M. S., Rochelle, G. T., "Innovative absorber/stripper configurations for $CO_2$ capture by aqueous monoethanolamine", Industrial & Engineering Chemistry Research, 45(8), 2465-2472, (2006) https://doi.org/10.1021/ie050547s
  11. Aspelund, A., Jordal, K., "Gas conditioning-The interface between $CO_2$ capture and transport", International Journal of Greenhouse Gas Control, 1 (3), 343-354, (2007) https://doi.org/10.1016/S1750-5836(07)00040-0
  12. Seider, W. D., Seader, J. D., Lewin, D. R., Product & Process Design Principles: Synthesis, Analysis and Evaluation, (With CD). John Wiley & Sons, (2009)
  13. Decarre, S., Berthiaud, J., Butin, N., and Guillaume -Combecave, J. L., "$CO_2$ maritime transportation", International Journal of Greenhouse Gas Control, 4(5), 857-864, (2010) https://doi.org/10.1016/j.ijggc.2010.05.005