• Title/Summary/Keyword: $CO_2$ 선택도

Search Result 979, Processing Time 0.026 seconds

Gas Permeation Properties of $CO_2$ Through Poly(ethylene Glycol) Diacrylate/Poly(Propylene Glycol) Diacrylate Membrane (Poly(ethylene glycol)diacrylate/poly(propylene glycol)diacrylate 막의 이산화탄소 기체 투과특성에 관한 연구)

  • Rhim Ji Won;Nam Sang Yong;Lee Sun Yong;Yun Tae Il
    • Membrane Journal
    • /
    • v.14 no.3
    • /
    • pp.250-257
    • /
    • 2004
  • PEG(poly(ethylene glycol)) acrylate/PPG(poly(propylene glycol)) acrylate (PEG/PPG) was prepared using UV induced photopolymerization method to investigate gas permeation properties of the membrane. The effect of PPG content on the solubility, diffusivity, and permeability of $CO_2$, $O_2$, and $N_2$ in PEG/PPG membrane is reported at $25^{\circ}C$ and $35^{\circ}C$. PEG/PPG (9:1) membrane exhibits $CO_2$ permeability coefficient of 28.9 barrer and $CO_2$/$N_2$ pure gas selectivity of 57.9 at $25^{\circ}C$. Permeability coefficient of increased with increasing with PPG content in the membrane. PEG/PPG (5:5) membrane shows $CO_2$ permeability coefficient of 78.9 barrer and $CO_2$/$N_2$ pure gas selectivity of 33.2 at $25^{\circ}C$.

Separation of Gas Based on PTMSP-silica-PEI Composites (PTMSP-silica-PEI 복합막에 의한 기체 분리에 관한 연구)

  • Kang Tae-Bum;Hong Se-Lyung
    • Membrane Journal
    • /
    • v.16 no.2
    • /
    • pp.123-132
    • /
    • 2006
  • The PTMSP-silica-PEI composite membranes were synthesized from tetraethoxysilane (TEOS) and poly (1-trimethylsilyl-1-propyne) (PTMSP) by sol-gel process. The PTMSP-silica nanocomposite membranes were characterized by $^1H-NMR$, FT-IR, TGA, XPS, SEM, GPC and gas permeation measurements were accomplished with $H_2,\;O_2,\;N_2,\;CO_2,\;CH_4$. The gases permeability increased with increasing TEOS content. Both the permeability and selectivity of $H_2,\;CH_4$ increased to 15 wt% TEOS. While the permeability of $O_2,\;CO_2$ increased without decrease of selectivity.

Synthesis of Highly Enantiomerically Enriched Arenesulfonic Acid 2-Hydroxy Esters via Kinetic Resolution of Terminal Epoxides (속도론적 분할법을 통한 말단 에폭사이드로부터 고광학순도의 아렌술폰산 2-하이드록시 에스터의 합성)

  • Lee, Yae Won;Yang, Hee Chun;Kim, Geon-Joong
    • Applied Chemistry for Engineering
    • /
    • v.27 no.5
    • /
    • pp.490-494
    • /
    • 2016
  • This paper describes the very efficient and highly enantioselective ring opening of terminal epoxides with alkyl and arene sulfonic acid. The dinuclear chiral (salen) Co complexes bearing Lewis acids of Al, Ga and In catalyze the reaction enantioselectively in the presence of tetrabutylammonium chloride using tert-butyl methyl ether as a solvent. The variation of the anion of the tetra butyl ammonium salt has significant impact on the reactivity and selectivity of the asymmetric ring opening of phenyl glycidyl ether with p-toluenesulfonic acid. The order of reactivity and selectivity was found to be $Cl^-$ > $l^-$ > $Br^-$ > $OH^-$. Strong synergistic effects of the different Lewis acid centers of Co-Al, Co-Ga and Co-In complexes were observed in the catalytic process. The dinuclear chiral salen catalyst containing $AlCl_3$ was found to be most active and highly enantioselective (91% ee).

CO2 Separation Performance of PEBAX Mixed Matrix Membrane Using PEI-GO@ZIF-8 as Filler (충진물로 PEI-GO@ZIF-8를 사용한 PEBAX 혼합막의 CO2 분리 성능)

  • Eun Sun Yi;Se Ryeong Hong;Hyun Kyung Lee
    • Membrane Journal
    • /
    • v.33 no.1
    • /
    • pp.23-33
    • /
    • 2023
  • In this study, a mixed matrix membrane was prepared by varying the contents of PEI-GO@ZIF-8 synthesized in PEBAX 2533, and the permeation characteristics of N2 and CO2 were studied. The N2 permeability of the PEBAX/PEIGO@ZIF-8 mixed matrix membrane decreased as the PEI-GO@ZIF-8 content increased, and the CO2 permeability showed different trends depending on the PEI-GO@ZIF-8 content. The CO2 permeability increased in pure PEBAX membrane up to PEBAX/PEI-GO@ZIF-8 0.1 wt%, but decreased at the subsequent content. The PEI-GO@ZIF-8 0.1 wt% mixed matrix membrane had a CO2 permeability of 221.9 Barrer and a CO2/N2 selectivity of 60.0, showing the highest permeation properties with improved CO2 permeability and CO2/N2 selectivity among the prepared mixed matrix membrane and we obtained a result that reached the Robeson upper-bound. This is due to the -COOH, -O-, and -OH functional groups of GO and the amine group bonded to PEI, which interact friendly with CO2, and the effect of ZIF-8, which causes gate-opening for CO2 while the fillers are evenly dispersed in PEBAX.

Transport Properties of PEBAX Blended Membranes with PEG and Glutaraldehyde for SO2 and Other Gases (SO2와 다른 기체에 대한 PEG와 Glutaraldehyde가 혼합된 PEBAX 막의 투과 특성)

  • Cho, Eun Hye;Kim, Kwang Bae;Rhim, Ji Won
    • Polymer(Korea)
    • /
    • v.38 no.6
    • /
    • pp.687-693
    • /
    • 2014
  • Poly(ether-block-amide) 1657 (PEBAX 1657) blended membranes with molecular weight 400 poly(ethylene glycol) (PEG 400) were prepared and their permeability was tested for the gases $N_2$, $O_2$, $CH_4$, $CO_2$, and $SO_2$ by the time-lag method. The permeation characteristics were investigated in terms of diffusivity and solubility, which are dominant factors for gas transport. With the addition of PEG 400, the permeability of all the gases increased and also the ideal selectivity for several pair gases was enhanced. In particular, selectivity for $CO_2/N_2$ ranged from 53.2 (pristine PEBAX 1657 membrane) to 84.1 (50% PEG 400 added), for $SO_2/CO_2$ from 38.9 to 50.7, and for $CO_2/CH_4$ from 17.7 to 31.4. The increase of both permeability and selectivity is mainly because of the increase of solubility of the gases, especially $CO_2$ and $SO_2$. To obtain durability against water vapor, glutaraldehyde (GA) was added to the PEBAX 1657/PEG 400 blended membranes. As a result, permeability decreased owing to a reduction of the free volume and ether oxide units, which are the main factors in elevating the permeability for the blended membranes, and selectivity decrease however; we believe that the durability of the resulting membranes would be increased.

Hydrogen Production for PEMFC Application in Plasma Reforming System (PEMFC용 플라즈마 개질 시스템의 수소 생산)

  • Yang, Yoon Cheol;Chun, Young Nam
    • Korean Chemical Engineering Research
    • /
    • v.46 no.5
    • /
    • pp.1002-1007
    • /
    • 2008
  • The purpose of this paper studied the optimal hydrogen production condition of plasma reforming system to operate the PEMFC. Plasma reforming reactor used with Ni catalyst reactor at the same time, So $H_2$ concentration increased. Also the WGS and PrOx reactor were designed to remove CO concentration under 10 ppm, because CO has effect on catalyst poisoning of PEMFC. The maximum $H_2$ production condition in plasma reforming system was S/C ratio 3.2, $CH_4$ flow rate 2.0 L/min, catalytic reactor temperature $700{\pm}5^{\circ}C$ and input power 900 W. At this time, the concentration of produced syngas was $H_2$ 70.2%, CO 7.5%, $CO_2$ 16.2%,$CH_4$ 1.8%. The hydrogen yield, hydrogen selectivity and $CH_4$ conversion rate were 56.8%, 38.1% and 92.2% respectively. The energy efficiency and specific energy requirement were 37.0%, 183.6 kJ/mol. In additional, The experiment of $CO_2/CH_4$ ratio proceeded. Also WGS reactor experiment was proceeding on optimum condition of plasma reactor and the exit concentration were $H_2$ 68%, CO 337 ppm, $CO_2$ 24.0%, $CH_4$ 2.2%, $C_2H_4$ 0.4%, $C_2H_6$ 4.1%. At this time, experiment result of PrOx reactor were $H_2$ 51.9%, CO 0%, $CO_2$ 17.3%.

Preparation of Asymmetric Folyethersulfone Hollow Fiber Membranes for Flue Gas Separation (온실기체 분리용 폴리이서설폰 비대칭 중공사 막의 제조)

  • Kim Jeong-Hoon;Sohn Woo-Ik;Choi Seung-Hak;Lee Soo-Bok
    • Membrane Journal
    • /
    • v.15 no.2
    • /
    • pp.147-156
    • /
    • 2005
  • It is well-known that polyethersulfone (PES) has high $CO_2$ selectivity over $N_2\;(or\;CH_4)$ and excellent pressure resistance of $CO_2$ plasticization among muy commercialized engineering plastics[1-4]. Asymmetric PES hollow fiber membranes for flue gas separation were developed by dry-wet spinning technique. The dope solution consists of PES, NMP and acetone. Water and water/NMP mixtures are used in outer and inner coagulants, respectively. Gas permeation rate (i.e., permeance) and $CO_2/N_2$ selectivity were measured with pure gas, respectively and the micro-structure of hollow fiber membranes was characterized by scanning electron microscopy. The effects of polymer concentration, ratio of NMP to acetone, length of air gap, evaporation condition and silicone coating were investigated on the $CO_2/N_2$ separation properties of the hollow fibers. Optimized PES hollow fiber membranes exhibited high permeance of $25\~50$ GPU and $CO_2/N_2$ selectivity of $30\~40$ at room temperature and have the apparent skin layer thickness of about $0.1\;{\mu}m$. The developed PES hollow fiber membranes, would be a good candidate suitable for the flue gas separation process.

(PIM-co-Ellagic Acid)-based Copolymer Membranes for High Performance CO2 Separation ((PIM-co-Ellagic Acid)-기반의 이산화탄소 분리막의 개발)

  • Hossain, Iqubal;Husna, Asmaul;Kim, Dongyoung;Kim, Tae-Hyun
    • Membrane Journal
    • /
    • v.30 no.6
    • /
    • pp.420-432
    • /
    • 2020
  • Random copolymers made of both 'polymer of intrinsic microporosity (PIM-1)' and Ellagic acid were prepared for the first time by a facile one-step polycondensation reaction. By combining the highly porous and contorted structure of PIM (polymers with intrinsic microporosity) and flat-type hydrophilic ellagic acid, the membranes obtained from these random copolymers [(PIM-co-EA)-x] showed high CO2 permeability (> 4516 Barrer) with high CO2/N2 (> 23~26) and CO2/CH4 (> 18~19) selectivity, that surpassed the Robeson upper bound (2008) for both pairs of the gas mixture. Incorporation of flat-type ellagic acid into the PIM-1 not only enhances the gas permeability by disturbing the kinked structure of PIM-1 but also increases the selectivity of CO2 over N2 and CH4, due to an increase of rigidity and polarity in the resultant copolymer membranes.

Catalytic Oxidation of Vinyl Chloride on Chromium Oxide Catalysts (크롬 산화물 촉매를 이용한 Vinyl Chloride의 산화 분해반응)

  • Lee, Hae-Wan;Kim, Young Chai;Moon, Sei-Ki
    • Applied Chemistry for Engineering
    • /
    • v.10 no.1
    • /
    • pp.58-66
    • /
    • 1999
  • The catalytic oxidation of vinyl chloride was investigated over $CrO_x$ impregnated on $Al_2O_3$ at temperature between 200 and $400^{\circ}C$. The major carbonaceous products were CO and $CO_2$, and the selectivity of $CO_2$ was gradually increased with increasing reaction temperature, while that of CO was dropped consequently. This suggests that CO is the first product which is further oxidized to $CO_2$ in the oxidation of vinyl chloride over $CrO_x/Al_2O_3$. The addition of HCl in the feed didn't affect the conversion of vinyl chloride, but the selectivity of $CO_2$ decreased by adding HCl. It implies that HCl inhibits, the complete oxidation of vinyl chloride to $CO_2$. When oxidizing vinyl chloride in dry air, significant amounts of $Cl_2$ were observed, while no $Cl_2$ was detected in the humid condition. The activities of several catalysts including various precious metals and other transition metal oxides were measured, it was found that the catalytic activity of 12% $CrO_x/Al_2O_3$ was higher than other catalysts except 1% $Pt/Al_2O_3$. The reaction rate of 12% $CrO_x/Al_2O_3$ was 1.2 times lower than that of 1% Pt/alumina, but it was 3 to 8 times more active than other catalysts for vinyl chloride oxidation at $275^{\circ}C$.

  • PDF

Preparation and Gas Permeability Measurements of PVDF-HFP/Ionic Liquid Gel Membranes (PVDF-HFP/이온성 액체 겔 분리막 제조 및 기체 투과도 측정)

  • Ko, Youngdeok;Park, Doohwan;Baek, Ilhyun;Hong, Seong Uk
    • Applied Chemistry for Engineering
    • /
    • v.25 no.6
    • /
    • pp.559-563
    • /
    • 2014
  • It is well known that $CO_2$ can be dissolved easily in imidazolium-based room temperature ionic liquids (RTILs). Because of the high $CO_2$ solubility in RTILs, membranes containing RTILs can separate easily gas mixtures such as $CO_2/N_2$ and $CO_2/CH_4$. In this study, we prepared poly(vinylidene fluoride)-hexafluoropropyl copolymer (PVDF-HFP) gel membranes with several RTILs and measured permeabilities of several gases. When the anion of ionic liquids was tetrafluoroborate($BF{_4}^-$), both $CO_2$ permeability and selectivities decreased as the carbon number of the cation increased. When the cation of ionic liquids was 1-ethyl-3-methylimidazolium[emim], $CO_2$ permeability of gel membranes containing bis(trifluoromethane) sulfoneimide($Tf_2N^-$) anion was double compared to those containing tetrafluoroborate($BF{_4}^-$) anion. However, $CO_2/N_2$ and $CO_2/CH_4$ selectivities of the $Tf_2N^-$ case were decreased, whereas the $H_2$ selectivity was almost the same for two cases.