• Title/Summary/Keyword: $CO_2$고정 재료

Search Result 67, Processing Time 0.031 seconds

An Experimental Study on the Properties of Chloride Binding of Mg/Al-NO3 and Ca/Al-NO3 Layered Double Hydroxides in Solution (수용액내에서 Mg/Al-NO3 및 Ca/Al-NO3 층상이중수산화물(LDHs)의 염소이온 고정화 특성에 관한 실험적 연구)

  • Lee, Seung-Yeop;Yang, Hyun-Min;Lee, Han-Seung
    • Journal of the Korea Institute of Building Construction
    • /
    • v.16 no.3
    • /
    • pp.219-227
    • /
    • 2016
  • Chloride ions ingress continuously in reinforced concrete through pores of it by $Cl^-$. Finally, it causes a localized corrosion of the rebar and then it generates cracks on concrete structures. Recently, new materials removing harmful anions have been developed. Layered double hydroxides(LDHs) has an excellent ability to remove harmful anions because various anions can be adsorbed in the interlayer space between divalent and trivalent cations. Thus, LDHs has been applied in various fields. Especially, LDHs is expected to be effective adsorbent binding chloride ions. In this study, $Ca/Al-NO_3$ and $Mg/Al-NO_3$ LDHs were prepared by using a co-precipitation method. $Ca/Al-NO_3$ and $Mg/Al-NO_3$ LDHs were compared and analyzed by using XRD, SEM analysis. Many nano size hexagonal crystals were observed by SEM. Experiments for binding chloride ions of LDHs were conducted by using potentiometric method. The experimental data were measured every 15 minutes. It was observed that the chloride ion content is reduced by increasing of LDHs mass fraction and the reaction rate of $Mg/Al-NO_3$ is faster than $Ca/Al-NO_3$. In future studies, binding chloride capacity in cement materials will be evaluated based on results of this study.

Artificial Photosynthesis System Containing CO2 Conversion Process (이산화탄소 변환 과정이 포함된 인공 광합성 시스템)

  • Kim, Kibum
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.1
    • /
    • pp.63-68
    • /
    • 2018
  • This paper presents an integrated photochemical reaction system (i.e., an artificial leaf) that uses earth-abundant catalysts for artificial photosynthesis with a carbon dioxide ($CO_2$) fixation process. The performance of the system was investigated in terms of the energy capture and conversion capabilities. A wireless configuration was achieved by directly doping cobalt oxide as an oxygen-evolving catalyst for water splitting reaction on the illuminated surface of photovoltaic (PV) cell, as well as molybdenum disulfide ($MoS_2$) as an efficient catalyst for $CO_2$ reduction on the back substrate surfaces of the PV cell. The system produces hydrogen and carbon monoxide (CO) as sustainable fuels (i.e., synthesis gas) at around 4.5% efficiency, which implies more than 75% catalytic efficiency at the cathode. The process of solar-driven $CO_2$ conversion and water-splitting reaction is contained in one system, which is one step closer to the successful realization of artificial photosynthesis.

Optical and structural properties of ZnMgO thin films by RF co-sputtering (RF magnetron sputtering으로 성장된 ZnMgO박막의 구조적, 광학적 특성 분석)

  • Kang, Si-Woo;Kim, Young-Yi;Ahn, Cheol-Hyoun;Cho, Hyung-Koun
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.06a
    • /
    • pp.178-178
    • /
    • 2007
  • II-VI의 넓은 밴드갭 (3.37 eV)을 가지는 ZnO는 solar cells, transparent conductive electrodes, ultraviolet light emitters, and chemical sensors 등에 응용되고 있다. 특히 고효율 ZnO계 발광 소자 구현을 위하여 MgO (7.7eV), CdO (2.0eV) 등의 고용을 통한 밴드갭을 엔지니어링 하며, 단파장 영역의 광원을 확보하기 위하여 MgO 첨가를 통한 밴드갭 에너지를 증가시키는 방향으로의 연구가 활발하다. 그러나 ZnO의 wurtzite 구조와 MgO의 rocksalt 구조의 상이한 결정구조로 인하여 Mg의 고용한계는 4 at. %, 4.1 eV 알려져 있다. 본 실험에서는 p-type Si (100), c-sapphire (0002)과 GaN 기판 위에 MgO (99.999 %)와 ZnO (99.999 %) 두가지 타겟을 사용하여 RF co-스퍼터링법으로 ZnMgO 박막을 증착 하였다. 이때 ZnO 타겟의 power 밀도는 고정 시키고 MgO 타겟의 power 밀도를 변화 시키며 Mg의 함량을 조절하여 그에 따른 광학적 구조적 특성의 변화를 연구 하였다. 성장된 ZnMgO 박막은 MgO 타겟의 power 밀도가 증가할 때 Mg의 함량이 10 at. %까지 증가 하며, 그에 따른 표면의 거칠기 및 입계 크기가 감소하며, 박막의 성장속도 또한 감소함을 SEM과 AFM을 통하여 알 수 있었다. XRD를 동하여 ZnMgO 박막의 (0002) peak의 위치는 $34.50^{\circ}{\sim}34.7^{\circ}$로 오른쪽으로 이동하며, c-축으로 성장하였음을 알 수 있다. PL과 UV룰 동하여, Mg의 함량이 증가 할수록 박막의 밴드갭 에너지는 3.2 eV에서 4.1 eV 로 증가하였다.

  • PDF

Changes on Growth, Photosynthesis and Pigment contents of the Maackia amurensis and Viburnum opulus var. calvescens under Enhanced Temperature and CO2 Concentration (온도와 CO2 농도 증가에 따른 다릅나무와 백당나무의 생장, 광합성 및 광색소 함량 변화)

  • Han, Sim-Hee;Kim, Du-Hyun;Kim, Gil-Nam;Lee, Jae-Cheon
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.13 no.3
    • /
    • pp.115-122
    • /
    • 2011
  • The impacts of elevated temperature and $CO_2$ were studied on the seedlings of Maackia amurensis and Viburnum opulus var. calvescens. The seedlings were grown in controlled-environment growth chambers with four combinations of temperature and $CO_2$ treatments: $25^{\circ}C$ + ambient $CO_2$ (400 ppm), $25^{\circ}C$ + elevated $CO_2$ (800 ppm), $30^{\circ}C$ + ambient $CO_2$ (400 ppm), and $30^{\circ}C$ + elevated $CO_2$ (800 ppm). Under elevated temperature and $CO_2$ concentration, the dry weight decreased in seedlings of M. amurensis, but increased in seedlings of V. opulus var. calvescens. In addition, the shoot to root (S/R) ratio in M. amurensis reduced but that of V. opulus var. calvescens increased under elevated $CO_2$ concentration. The S/R ratios of two tree species increased under higher temperature. M. amurensis represented lower carboxylation efficiency under higher temperature and $CO_2$ concentration and that of V. opulus var. calvescens showed lower values under the only higher temperature. Photosynthetic pigment content of in the leaves of M. amurensis was lower under higher $CO_2$ concentration and higher under the increase of temperature, but that of V. V. opulus var. calvescens decreased according to the increase of temperature. Chlorophyll a/b ratios of M. amurensis and V. V. opulus var. calvescens decreased obviously with the increase of $CO_2$ concentration and temperature, respectively. In conclusion, the growth and physiological responses under the environmental changes such as temperature and $CO_2$ concentration depend on the tree species. Therefore, more studies are needed to predict the response of each tree species against the climate changes.

Plant Physiological Responses in Relation to Temperature, Light Intensity, and CO2 Concentration for the Selection of Efficient Foliage Plants on the Improvement of Indoor Environment (실내 환경 개선에 적합한 식물 선발을 위한 온도, 광도, 이산화탄소 농도에 따른 관엽식물들의 생리적 반응)

  • Park, Sin-Ae;Kim, Min-Gi;Yoo, Mung-Hwa;Oh, Myung-Min;Son, Ki-Cheol
    • Horticultural Science & Technology
    • /
    • v.28 no.6
    • /
    • pp.928-936
    • /
    • 2010
  • This study was conducted to select efficient foliage plants for improving indoor environment conditions through the investigation of physiological responses including photosynthetic rate according to temperature, light intensity, and $CO_2$ level. Eight popular foliage plants used in this study were $Hedera$ $helix$ L., $Cissus$ $rhombifolia$ Vahl, $Ficus$ $benjamina$ L. 'Hawaii', $Syngonium$ $podophyllum$ Schott 'Albo-Virens', $Dieffenbachia$ $sp.$ 'Marrianne', $Pachira$ $aquatica$ Aubl., $Spathiphyllum$ $wallisii$ Regel, and $Scindapsus$ $aureus$ Engler. Photosynthetic rate and transpiration rate of the plants subjected to various light intensities (0, 25, 50, 75, 100, 150, 300, and $600{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$ PPFD), $CO_2$ levels (0, 50, 100, 200, 400, 700, and $1,000{\mu}molCO_2{\cdot}mol^{-1}$), and two different temperatures (16 and $22^{\circ}C$) were measured. In addition, various parameters in relation to photosynthesis were calculated from the measured data. As a result, the patterns of photosynthesis varied among 8 foliage plants according to light intensity, $CO_2$ level, and temperature. Most foliage plants except $Dieffenbachia$ had high levels of apparent quantum yield, which represents the photosynthetic rate under low light intensity (PPFD $0-100{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$). $Hedera$ $helix$, $Ficus$ $benjamina$, $Pachira$ $aquatica$, and $Spathiphyllum$ $wallisii$ exposed to high light intensity (PPFD $200-600{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$) showed high levels of photosynthesis. $Cissus$ $rhombifolia$ and $Syngonium$ $podophyllum$ were low in $CO_2$ fixation efficiency compared to the other 6 foliage indoor plants. $Hedera$ $helix$ and $Spathiphyllum$ $wallisii$ showed high photosynthetic rate under high $CO_2$ level and vigorous photosynthesis was also observed in $Ficus$ $benjamina$ and $Pachira$ $aquatica$ grown under $22^{\circ}C$. Considering characteristics of indoor environment such as low light, high $CO_2$ level, and low relative humidity, therefore, $Hedera$ $helix$, $Spathiphyllum$ $wallisii$, $Ficus$ $benjamina$, and $Pachira$ $aquatica$ were efficient indoor foliage plants to improve indoor environmental conditions.

Electromagnetic properties and attenuation of Mn-Zn ferrite used in the blocking filter application (Blocking filter 자심 재료용 Mn-Zn ferrite 의 전자기적 특성 및 신호 감쇄율)

  • Lee, Hae-Yon;Kim, Hyun-Sik;Kim, Jong-Ryung;Oh, Young-Woo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.11a
    • /
    • pp.95-98
    • /
    • 2002
  • 전력선 통신 blocking filter용 자심 재료를 개발하기 위해서 MnO 24 mol%, ZnO 25 mol% and $Fe_{2}O_{3}$ 51 mol% 의 기본조성에 $MoO_{3}$, $SiO_{2}$, CaO를 첨가하여 $1350^{\circ}C$에서 대기압 상수 A를 7.8롤 고정하고 소결하여 미세구조를 제어하였으며 기본 조성에 $MoO_{3}$ 400 ppm, $SiO_{2}$ 100 ppm and CaO 200 ppm을 첨가한 경우 평균 입경 $25{\mu}m$ 의 균일한 결정립으로 구성된 미세구조를 얻었고 기공의 감소에 의한 치밀화로 $4.98g/cm^{2}$의 고밀도화가 이루어 졌다. 또한 소결체의 균일한 미세구조와 고밀도화로 인해서 8221(${25^{\circ}C}$, 1 KHz) 의 가장 높은 투자율 특성을 나타냈다. 시편의 온도가 증가함에 따라 투자율이 증가되어 ${110^{\circ}C}$에서 13904의 거대 투자융이 측정되었고, 코일의 인가주파수가 1 KHz에서 1 MHz까지 증가됨에 따라 최고 ${102^{\circ}C}$까지 시편 온도가 상승하였다. 가장 높은 투자율 특성을 나타낸 ferrite 코어를 사용하여 단상 및 3상용 블로킹 필터의 감쇄율을 측정한 결과 현재 국내의 전력선 통신용 주파수 대역으로 규정되어 있는 10 KHz ~ 450 KHz 대역에서 각각 -46.46 dB와 -73.9 dB의 최고 값을 얻었다.

  • PDF

Marginal fit of three-unit zirconia anterior fixed dental prostheses fabricated using CAD/CAM and MAD/MAM system (CAD/CAM과 MAD/MAM 시스템으로 제작된 3-unit 지르코니아 고정성 국소의치의 변연 적합도에 관한 연구)

  • Song, Tae-Jin;Yeo, In-Sung;Yang, Jae-Ho
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.49 no.2
    • /
    • pp.145-151
    • /
    • 2011
  • Purpose: The purpose of this study was to compare the marginal fit of three-unit zirconia fixed dental prostheses (FDPs) fabricated using CAD/CAM and MAD/MAM system. Materials and methods: Dentiform maxillary central and lateral incisor were prepared for 3-unit FDP and fixed in yellow stone. This model was duplicated to epoxy resin die. On the resin die, fifteen 3-unit FDPs were fabricated. Metal-ceramic group was three-unit metal-ceramic FDPs, $Everest^{(R)}$ group was zirconia three-unit FDPs fabricated using the $Everest^{(R)}$ system (Kavo Dental GmbH, Biberach, Germany) and $Rainbow^{TM}$ group was zirconia three-unit FDPs fabricated using the $Rainbow^{TM}$ system (Dentium Co. Inc., Seoul, South Korea). They were cemented to resin dies with adhesive resin cement. After removing pontics, each retainers were separated and observed under measuring machine (Presize 440C) and analyzed through one-way ANOVA and Duncan test (${\alpha}$ = .05). Results: Mean values and standard deviations of marginal gap dimensions in each group for three-unit FDPs were $78.5{\pm}11.05\;{\mu}m$ for the metal-ceramic group, $59.30{\pm}11.63\;{\mu}m$ for the $Everest^{(R)}$ group and $70.34{\pm}13.98\;{\mu}m$ for the $Rainbow^{TM}$ group. Conclusion: 1. The $Everest^{(R)}$ group in comparison with metal-ceramic group showed better marginal fit, which had significant differences P<.05. 2. The mean marginal gap values between $Everest^{(R)}$ and $Rainbow^{TM}$ group did not showed significant differences (P>.05). 3. The mean marginal gap values between $Rainbow^{TM}$ group and metal-ceramic group did not showed significant differences (P>.05). 4. The mean marginal gaps of each group were within clinically acceptable range ($120\;{\mu}m$).

3-D Finite element stress analysis in screw-type, cement-type, and combined-type implant fixed partial denture designs (임플란트 상부보철물의 유지형태에 따른 3차원 유한요소 응력분석)

  • Lee, Sung-Chun;Kim, Seok-Gyu
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.47 no.4
    • /
    • pp.365-375
    • /
    • 2009
  • Statement of problems: Stress analysis on implant components of the combined screw- and cement-retained implant prosthesis has not investigated yet. Purpose: The purpose of this study was to assess the load distribution characteristics of implant prostheses with the different prosthodontic retention types, such as cement-type, screw-type and combined type by using 3-dimensional finite element analysis. Material and methods: A 3-dimensional finite element model was created in which two SS II implants (Osstem Co. Ltd.) were placed in the areas of the first premolar and the first molar in the mandible, and three-unit fixed partial dentures with four different retention types were fabricated on the two SS II implants. Model 1 was a cement-retained implant restoration made on two cement-retained type abutments (Comocta abutment; Osstem Co. Ltd.), and Model 2 was a screw-retained implant restoration made on the screw-retained type abutments (Octa abutment; Osstem Co. Ltd.). Model 3 was a combined type implant restoration made on the cement-retained type abutment (Comocta abutment) for the first molar and the screw-retained type abutment (Octa abutment) for the first premolar. Lastly, Model 4 was a combined type implant restoration made on the screw-retained type abutment (Octa abutment) for the first molar and the cement-retained type abutment (Comocta abutment) for the first premolar. Average masticatory force was applied on the central fossa in a vertical direction, and on the buccal cusp in a vertical and oblique direction for each model. Von-Mises stress patterns on alveolar bone, implant body, abutment, abutment screw, and prosthetic screw around implant prostheses were evaluated through 3-dimensional finite element analysis. Results: Model 2 showed the lowest von Mises stress. In all models, the von Mises stress distribution of cortical bone, cancellous bone and implant body showed the similar pattern. Regardless of loading conditions and type of abutment system, the stress of bone was concentrated on the cortical bone. The von-Mises stress on abutment, abutment screw, and prosthetic screw showed the lower values for the screw-retained type abutment than for the cement-retained type abutment regardless of the model type. There was little reciprocal effect of the abutment system between the molar and the premolar position. For all models, buccal cusp oblique loading caused the largest stress, followed by buccal cusp vertical loading and center vertical loading. Conclusion: Within the limitation of the FEA study, the combined type implant prosthesis did not demonstrate more stress around implant components than the cement type implant prosthesis. Under the assumption of ideal passive fit, the screw-type implant prosthesis showed the east stress around implant components.

Fit analysis of CAD-CAM custom abutment using micro-CT (Micro-CT를 이용한 맞춤형 CAD-CAM 지대주의 적합성 분석)

  • Min, Gwang-Seok;Chung, Chae-Heon;Kim, Hee-Jung
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.54 no.4
    • /
    • pp.370-378
    • /
    • 2016
  • Purpose: The purpose of this study was to investigate screw joint stability and sagittal fit between internal connection implant fixtures of two different manufacturers and customized abutments. Materials and methods: Internal connection implant systems from two different manufacturers (Biomet 3i system, Astra Tech system) were selected for this study (n=24 for each implant system, total n=48). For 3i implant system, half of the implants were connected with Ti ready-made abutments and the other half implants were connected with Ti CAD-CAM custom ones of domestic-make (Myplant, Raphabio Co., Seoul, Korea) and were classified into Group 1 and Group 2 respectively. Astra implants were divided into Group 3 and Group 4 in the same way. Micro-CT sagittal imaging was performed for fit analysis of interfaces and preloading reverse torque values (RTV) were measured. Results: In the contact length of fixture-abutment interface, there were no significant differences not only between Group 1 and Group 2 but also between Group 3 and Group 4 (Mann-Whitney test, P>.05). However, Group 2 and Group 4 showed higher contact length significantly than Group 1 and Group 3 in abutment-screw interface as well as fixture-screw one (Mann-Whitney test, P<.05). In addition, RTV was lower in CAD-CAM custom abutments compared to ready-made ones (Student t-test, P<.05). Conclusion: It is considered that domestically manufactured CAD-CAM custom abutments have similar fit at the fixture abutment interface and it could be used clinically. However, RTV of CAD-CAM custom abutments should be improved for the increase of clinical application.

An Experimental Study on the Carbonation Depth of Cement Paste Using Carbonation Reaction Accelerator (탄산화 반응 촉진제를 이용한 시멘트 페이스트의 탄산화 깊이에 관한 실험적 연구)

  • Seok-Man Jeong;Wan-Hee Yang;Dong-Cheol Park
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.11 no.4
    • /
    • pp.349-354
    • /
    • 2023
  • This study wa s conducted a s pa rt of ma ximizing the use of ca rbon dioxide by a pplying CCU(Ca rbon Ca pture, Utiliza tion) a mong technologies for reducing CO2 in the cement industry. In a carbon dioxide curing environment, changes in carbonation depth and changes in basic physical properties by age due to the mixing of carbonation reaction accelerators were usually targeted at Portland cement paste. In addition, in order to check the fixed amount of CO2 in the concrete field, a thermal analysis method was applied to evaluate CaCO3 decarbonization at high temperatures. As a result of the evaluation, it was confirmed that the carbonation depth in the cured body significantly increased due to the incorporation of CRA in the carbonation depth diffusion performance. In addition, it was confirmed that the weight reduction rate increased by 23.8 % and 40.77 %, respectively, compared to Plain, in the order of curing conditions for constant temperature and humidity and curing conditions for carbonation chambers, so it was confirmed that the amount of excellent CaCO3 produced by the addition of CRA increased as the concentration of CO2 increased.