• Title/Summary/Keyword: $CH_4$ Selectivity

Search Result 187, Processing Time 0.028 seconds

Reaction Characteristics of New Oxygen Carrier for 0.5 MWth Chemical Looping Combustion System at High Temperature and High Pressure Conditions (0.5 MWth 케미컬루핑 연소 시스템 적용을 위한 신규 산소전달입자의 고온·고압 반응 특성)

  • KIM, JUNGHWAN;LEE, DOYEON;NAM, HYUNGSEOK;JO, SUNG-HO;HWANG, BYUNG WOOK;BAEK, JEOM-IN;RYU, HO-JUNG
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.29 no.5
    • /
    • pp.473-482
    • /
    • 2018
  • To check applicability of recently developed new oxygen carrier for 0.5 MWth chemical looping combustion system, reactivity tests were carried out at high temperature and high pressure conditions. Pressure, temperature, gas velocity, $CH_4$ flow rate, and solid height were considered as operating variables. The new oxygen carrier (N016-R4) showed not only high fuel conversion but also high $CO_2$ selectivity within all the operating conditions in this study. The reactivity of N016-R4 particle was compared with previous oxygen carriers. The N016-R4 particle represented outstanding reactivity among 10 oxygen carriers in terms of fuel conversion and $CO_2$ selectivity.

Gas Transport Properties of Crosslinked Polyimide Membranes Induced by Aliphatic Diamines with Different Chain Length (사슬 길이가 다른 지방족 디아민으로 가교된 폴리이미드 분리막의 기체 투과 특성)

  • Lee, Hye Rim;Lee, Jung Moo;Nam, Sang Yong
    • Membrane Journal
    • /
    • v.23 no.6
    • /
    • pp.450-459
    • /
    • 2013
  • 2,3,5,6-Tetramethyl-1,4-phenylenediamine (TMPD) based polyimide (PI) were crosslinked with 1,2-Diaminoethane (DAE) and 1,6-Diaminohexane (DAH) to enhance gas transport properties. Fourier transform infrared (FT-IR) studies show that imide groups were converted into amide groups during crosslinking process. Thermogravimetric analysis (TGA) results indicate that the degradation temperature of crosslinked PI membranes decreased after crosslinking. This is due to degradation of alkyl group in crosslinking agent. The d-space of crosslinked PI membranes decreased with increasing crosslinking time. The ideal permeability for $CH_4$, $N_2$, $O_2$, and $CO_2$ decreased after crosslinking and the ideal permeability of crosslinked PI membranes induced by DAH is larger than that by DAE. In contrast, the permselectivity of $CO_2/CH_4$, $CO_2/N_2$ and $O_2/N_2$ increased during crosslinking. For the gas pair of $CO_2/CH_4$, the maximum increment is about 39.5% after 6 minutes of DAE crosslinking. Also, that of $O_2/N_2$ gas pair is about 20.5% after 6 minutes of DAE crosslinking. According to these result, DAE is more suitable for enhanced permselectivity than DAH. On the contrary, DAE is not useful for $CO_2/N_2$ separation due to reduction in $CO_2/N_2$ permselectivity after 3 minutes DAE crosslinking.

Etch Characteristics of MgO Thin Films in Cl2/Ar, CH3OH/Ar, and CH4/Ar Plasmas

  • Lee, Il Hoon;Lee, Tea Young;Chung, Chee Won
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.387-387
    • /
    • 2013
  • Currently, the flash memory and the dynamic random access memory (DRAM) have been used in a variety of applications. However, the downsizing of devices and the increasing density of recording medias are now in progress. So there are many demands for development of new semiconductor memory for next generation. Magnetic random access memory (MRAM) is one of the prospective semiconductor memories with excellent features including non-volatility, fast access time, unlimited read/write endurance, low operating voltage, and high storage density. MRAM is composed of magnetic tunnel junction (MTJ) stack and complementary metal-oxide semiconductor (CMOS). The MTJ stack consists of various magnetic materials, metals, and a tunneling barrier layer. Recently, MgO thin films have attracted a great attention as the prominent candidates for a tunneling barrier layer in the MTJ stack instead of the conventional Al2O3 films, because it has low Gibbs energy, low dielectric constant and high tunneling magnetoresistance value. For the successful etching of high density MRAM, the etching characteristics of MgO thin films as a tunneling barrier layer should be developed. In this study, the etch characteristics of MgO thin films have been investigated in various gas mixes using an inductively coupled plasma reactive ion etching (ICPRIE). The Cl2/Ar, CH3OH/Ar, and CH4/Ar gas mix were employed to find an optimized etching gas for MgO thin film etching. TiN thin films were employed as a hard mask to increase the etch selectivity. The etch rates were obtained using surface profilometer and etch profiles were observed by using the field emission scanning electron microscopy (FESEM).

  • PDF

Experimental Study of Reactive Ion Etching of Tungsten Films Using $SF_6$ Plasma ($SF_6$플라즈마를 이용한 텅스텐 박막의 반응성이온식각에 관한 실험적 연구)

  • 박상규;서성우;이시우
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.30A no.7
    • /
    • pp.60-74
    • /
    • 1993
  • Experiments of RIE of tungsten films using SF$_{6}$ plasma were conducted to investigate the effect of process parameters on etch rate, uniformity, anisotropy, and selectivity. As power increased, the etch rate increased. Maximum etch rate was obtained at 200mtorr As interelectrode spacing increased the etch rate increased for P < 200mtorr while it decreased for P> 200mtorr. Etch rate was maximum at 20 sccm gas flow rate. As substrate temperature increased, the etch rate increased and activation energy was 0.046 eV. In addition, maximum etch rate was acquired at 20% $O_{2}$ addition. The etch rate slightly increased when Ar was added up to 20% while it continuously decreased when N$_{2}$ was added. Uniformity got improved as pressure decreased and was less than 4% for P <100mtorr. Mass spectrometer was utilized to analyze gas composition and S and F peaks were observed from XPS analysis with increasing power. The anisotropy was better for smaller power and spacing, and lower pressure and temperature. It improved when CH$_{4}$ was added and anisotropic etch profile was obtained when about 10% $O_{2}$ was added. The selectjvity was better for smaller power larger pressure and spacing, and lower temperature. Especially. low temperature processing was proposed as a novel method to improve the anisotropy and selectivity.

  • PDF

Rate and Product Studies on the Solvolyses of Allyl Chloroformate

  • Koh, Han Joong;Kang, Suk Jin
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.12
    • /
    • pp.4117-4121
    • /
    • 2012
  • The solvolysis rate constants of allyl chloroformate ($CH_2=CHCH_2OCOCl$, 3) in 30 different solvents are well correlated with the extended Grunwald-Winstein equation, using the $N_T$ solvent nucleophilicity scale and $Y_{Cl}$ solvent ionizing scale, with the sensitivity values of $0.93{\pm}0.05$ and $0.41{\pm}0.02$ for l and m, respectively. These l and m values can be considered to support a $S_N2$ reaction pathway. The activation enthalpies (${\Delta}H^{\neq}$) were 12.5 to 13.4 $kcal{\cdot}mol^{-1}$ and the activation entropies (${\Delta}S^{\neq}$) were -34.4 to -37.3 $cal{\cdot}mol^{-1}{\cdot}K^{-1}$, which is also consistent with the proposed bimolecular reaction mechanism. The solvent kinetic isotope effect (SKIE, $k_{MeOH}/k_{MeOD}$) of 2.16 was also in accord with the $S_N2$ mechanism. The values of product selectivity (S) for the solvolyses of 3 in alcohol/water mixtures was 1.3 to 3.9, which is also consistent with the proposed bimolecular reaction mechanism.

Capacitively Coupled SF6, SF6/O2, SF6/CH4 Plasma Etching of Acrylic at Low Vacuum Pressure (저진공 축전결합형 SF6, SF6/O2, SF6/CH4 플라즈마를 이용한 아크릴의 반응성 건식 식각)

  • Park, Yeon-Hyun;Joo, Young-Woo;Kim, Jae-Kwon;Noh, Ho-Seob;Lee, Je-Won
    • Korean Journal of Materials Research
    • /
    • v.19 no.2
    • /
    • pp.68-72
    • /
    • 2009
  • This study investigated dry etching of acrylic in capacitively coupled $SF_6$, $SF_6/O_2$ and $SF_6/CH_4$ plasma under a low vacuum pressure. The process pressure was 100 mTorr and the total gas flow rate was fixed at 10 sccm. The process variables were the RIE chuck power and the plasma gas composition. The RIE chuck power varied in the range of $25{\sim}150\;W$. $SF_6/O_2$ plasma produced higher etch rates of acrylic than pure $SF_6$ and $O_2$ at a fixed total flow rate. 5 sccm $SF_6$/5 sccm $O_2$ provided $0.11{\mu}m$/min and $1.16{\mu}m$/min at 25W and 150W RIE of chuck power, respectively. The results were nearly 2.9 times higher compared to those at pure $SF_6$ plasma etching. Additionally, mixed plasma of $SF_6/CH_4$ reduced the etch rate of acrylic. 5 sccm $SF_6$/5 sccm $CH_4$ plasma resulted in $0.02{\mu}m$/min and $0.07{\mu}m$/min at 25W and 150W RIE of chuck power. The etch selectivity of acrylic to photoresist was higher in $SF_6/O_2$ plasma than in pure $SF_6$ or $SF_6/CH_4$ plasma. The maximum RMS roughness (7.6 nm) of an etched acrylic surface was found to be 50% $O_2$ in $SF_6/O_2$ plasma. Besides the process regime, the RMS roughness of acrylic was approximately $3{\sim}4\;nm$ at different percentages of $O_2$ with a chuck power of 100W RIE in $SF_6/O_2$ plasma etching.

Separation Characteristics of $CH_4/CO_2$ Mixed Gas by Polyamide Composite Membrane (Polyamide 복합막을 이용한 메탄/이산화탄소 혼합기체의 분리 특성)

  • Lee, Jae-Hwa;Lee, Geon-Ho;Choi, Kyung-Seok;Poudel, Jeeban;Kim, Soo-Ryong;Oh, Sea-Cheon
    • Journal of the Korean Applied Science and Technology
    • /
    • v.29 no.3
    • /
    • pp.478-485
    • /
    • 2012
  • Polymers are widely used as membrane material for performing the separation of various gaseous mixtures due to their attractive permselective properties and high processability. The separation characteristics of $CH_4$ and $CO_2$ mixed gas using polyamide composite membrane has been studied in this work. The sample gas was prepared by mixing pure methane and carbon dioxide. Permeation tests were carried out at different operation conditions. Feed flow rates were varied between 800~1000 $cm^3/min$, and the stage cuts were varied between 50~60%. The gas inlet pressure and the temperature were varied as 6 bar and $30{\sim}70^{\circ}C$, respectively. The effects of the above mentioned parameters were investigated to estimate the permeability of $CH_4$ and $CO_2$, and the selectivity of $CO_2$ was also calculated for all conditions. The Arrhenius plots were also performed to obtaine the activation energies of $CH_4$ and $CO_2$ permeabilities.

Crystal Structure of the Three-dimensional Metal Complex Host in Clusion Compound [$Cd(pn)Ni(CN)_4{\cdot}0.5(CH_3COCH_3{\cdot}H_2O$) (3차원 금속 착제를 Host로 하는 포접 화합물 [$Cd(pn)Ni(CN)_4{\cdot}0.5(CH_3COCH_3{\cdot}H_2O$)의 결정구조)

  • Park, Gi Min;Lee, Uk;Am, Bon Jin Mu
    • Journal of the Korean Chemical Society
    • /
    • v.38 no.6
    • /
    • pp.435-441
    • /
    • 1994
  • The inclusion compound constituted with three-dimensional metal-complex $Cd(pn)Ni(CN)_4$ has been prepared and determined the crystal structure from single crystal X-ray diffraction data. Crystal data are as follows: $[Cd(pn)Ni(CN)_4]{\cdot}0.5(CH_3COCH_3{\cdot}H_2O)$, Fw = 387.35, Orthorhombic, $Pn2_1a$, a = 13.950(3) $\AA$, b = 26.713(7) $\AA$, c = 7.628(1) $\AA$, V = 2843(1) $\AA^3$, Z = 4, $D_x=1.81 gcm^{-3}$, $\mu(MoK{\alpha})$ = $28.153 cm^{-1}$, T = 297K, final R = 0.0418 for 3521($F_0>3{\sigma}(F_0)$). The metal-complex host provides tunnel cavity, similar to thiourea inclusion compounds, accommodated guest molecules $(=CH_3COCH_3\;and\;$H_2O).$ The stoichiometric host: guest ratio is 0.5. The title inclusion compound reveals another evidence for the host-selectivity, that is, the branched aliphatic guest molecule leads T-type host structure.

  • PDF

Carbon molecular sieves from soybean straw-based activated carbon for CO2/CH4 separation

  • Xu, Yuxian;Chen, Xiaochuan;Wu, Dan;Luo, Yongjin;Liu, Xinping;Qian, Qingrong;Xiao, Liren;Chen, Qinghua
    • Carbon letters
    • /
    • v.25
    • /
    • pp.68-77
    • /
    • 2018
  • Soybean straw (SS)-based activated carbon was employed as a precursor to prepare carbon molecular sieves (CMSs) via chemical vapor deposition (CVD) technique using methane as carbon source. Prior to the CVD process, SS was activated by 0.5 wt% $ZnCl_2$, followed by a carbonization at $500^{\circ}C$ for 1 h in $N_2$ atmosphere. $N_2$ (77 K) adsorption-desorption and $CO_2$ (273 K) adsorption tests were carried out to analyze the pore structure of the prepared CMSs. The results show that increasing the deposition temperature, time or methane flow rate leads the decrease in $N_2$ adsorption capacity, micropore volume and average pore diameter of CMSs. The adsorption selectivity coefficient of $CO_2/CH_4$ achieves as high as 20.8 over CMSs obtained under the methane flow rate of $30mL\;min^{-1}$ at $800^{\circ}C$ for 70 min. The study demonstrates the prepared CMSs are a candidate adsorbent for $CO_2/CH_4$ separation.

The Influence of $O_2$ Gas on the Etch Characteristics of FePt Thin Films in $CH_4/O_2/Ar$ gas

  • Lee, Il-Hoon;Lee, Tea-Young;Chung, Chee-Won
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.408-408
    • /
    • 2012
  • It is well known that magnetic random access memory (MRAM) is nonvolatile memory devices using ferromagnetic materials. MRAM has the merits such as fast access time, unlimited read/write endurance and nonvolatility. Although DRAM has many advantages containing high storage density, fast access time and low power consumption, it becomes volatile when the power is turned off. Owing to the attractive advantages of MRAM, MRAM is being spotlighted as an alternative device in the future. MRAM consists of magnetic tunnel junction (MTJ) stack and complementary metal- oxide semiconductor (CMOS). MTJ stacks are composed of various magnetic materials. FePt thin films are used as a pinned layer of MTJ stack. Up to date, an inductively coupled plasma reactive ion etching (ICPRIE) method of MTJ stacks showed better results in terms of etch rate and etch profile than any other methods such as ion milling, chemical assisted ion etching (CAIE), reactive ion etching (RIE). In order to improve etch profiles without redepositon, a better etching process of MTJ stack needs to be developed by using different etch gases and etch parameters. In this research, influences of $O_2$ gas on the etching characteristics of FePt thin films were investigated. FePt thin films were etched using ICPRIE in $CH_4/O_2/Ar$ gas mix. The etch rate and the etch selectivity were investigated in various $O_2$ concentrations. The etch profiles were studied in varying etch parameters such as coil rf power, dc-bias voltage, and gas pressure. TiN was employed as a hard mask. For observation etch profiles, field emission scanning electron microscopy (FESEM) was used.

  • PDF