• Title/Summary/Keyword: $Bi_2$$O_3$

Search Result 1,152, Processing Time 0.029 seconds

Effect of Sb/Bi Ratio on Sintering and Grain Boundary Properties of ZnO-Bi2O3-Sb2O3-NiO-Cr2O3 Varistor (Sb/Bi비가 ZnO-Bi2O3-Sb2O3-NiO-Cr2O3 바리스터의 소결과 입계 특성에 미치는 영향)

  • Hong, Youn-Woo;Lee, Young-Jin;Kim, Sei-Ki;Kim, Jin-Ho
    • Korean Journal of Materials Research
    • /
    • v.22 no.12
    • /
    • pp.689-695
    • /
    • 2012
  • We have examined the co-doping effects of 1/2 mol% NiO and 1/4 mol% $Cr_2O_3$ (Ni:Cr = 1:1) on the reaction, microstructure, and electrical properties, such as the bulk defects and the grain boundary properties, of ZnO-$Bi_2O_3-Sb_2O_3$ (ZBS; Sb/Bi = 0.5, 1.0, and 2.0) varistors. The sintering and electrical properties of Ni,Cr-doped ZBS, ZBS(NiCr) varistors were controlled using the Sb/Bi ratio. Pyrochlore ($Zn_2Bi_3Sb_3O_{14}$), ${\alpha}$-spinel ($Zn_7Sb_2O_{12}$), and ${\delta}-Bi_2O_3$ were detected for all of compositions. For the sample with Sb/Bi = 1.0, the Pyrochlore was decomposed and promoted densification at lower temperature by Ni rather than by Cr. A homogeneous microstructure was obtained for all of the samples affected by ${\alpha}$-spinel. The varistor characteristics were not dramatically improved (non-linear coefficient, ${\alpha}$ = 5~24), and seemed to form ${Zn_i}^{{\cdot}{\cdot}}$(0.17 eV) and ${V_o}^{\cdot}$(0.33 eV) as dominant defects. From impedance and modulus spectroscopy, the grain boundaries were found to have been divided into two types, i.e., one is tentatively assigned to ZnO/$Bi_2O_3$ (Ni,Cr)/ZnO (0.98 eV) and the other is assigned to a ZnO/ZnO (~1.5 eV) homojunction.

Effect of Sb/Bi Ratio on Sintering and Grain Boundary Properties of ZnO-Bi2O3-Sb2O3-Mn3O4-Co3O4 Varistor (Sb/Bi비가 ZnO-Bi2O3-Sb2O3-Mn3O4-Co3O4 바리스터의 소결과 입계 특성에 미치는 영향)

  • Hong, Youn-Woo;Lee, Young-Jin;Kim, Sei-Ki;Kim, Jin-Ho
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.25 no.11
    • /
    • pp.878-885
    • /
    • 2012
  • In this study we aims to examine the co-doping effects of 1/3 mol% $Mn_3O_4+Co_3O_4$ (1:1) on the reaction, microstructure, and electrical properties such as the bulk defects and grain boundary properties of $ZnO-Bi_2O_3-Sb_2O_3$ (ZBS; Sb/Bi=0.5, 1.0, and 2.0) varistors. The sintering and electrical properties of Mn,Co-doped ZBS, ZBS(MCo) varistors were controlled by Sb/Bi ratio. Pyrochlore ($Zn_2Bi_3Sb_3O_{14}$) was decomposed and promoted densification at lower temperature on heating in Sb/Bi=1.0 by Mn rather than Co. Pyrochlore on cooling was reproduced in all systems however, spinel (${\alpha}$- or ${\beta}$-polymorph) did not formed in Sb/Bi=0.5. More homogeneous microstructure was obtained in $Sb/Bi{\geq}1.0$ In ZBS(MCo), the varistor characteristics were improved drastically (non-linear coefficient, ${\alpha}$=30~49), and seemed to form $Zn_i^{..}$(0.17 eV) and $V_o^{\bullet}$(0.33 eV) as dominant defects. From impedance and modulus spectroscopy (IS & MS), the grain boundaries have divided into two types, i.e. the one is tentatively assign to $ZnO/Bi_2O_3(Mn,Co)/ZnO$ (0.47 eV) and the other ZnO/ZnO (0.80~0.89 eV) homojunctions.

Study on Low-Temperature sintering of Co2Z type Ba ferrites for chip inductor (Chip inductor용 Co2Z type Ba-ferrite의 저온소결에 관한 연구)

  • 조균우;한영호;문병철
    • Journal of the Korean Magnetics Society
    • /
    • v.12 no.5
    • /
    • pp.195-200
    • /
    • 2002
  • Low temperature sintering of Co$_2$Z type Ba ferrites with various oxide additives has been studied. Co$_2$Z phase was obtained by 2 step calcination and XRD peaks showed a good agreement with the peaks of the standard Co$_2$Z phase, except for some minor extra peaks. ZnO-B$_2$O$_3$ glass, ZnO-B$_2$O$_3$ and CuO, ZnO-B$_2$O$_3$ and Bi$_2$O$_3$, and ZnO-Bi$_2$O$_3$ glass were added to lower sintering temperatures. Specimens were sintered at the temperature range between 900 $^{\circ}C$ and 1000 $^{\circ}C$. In the single addition of ZnO-B$_2$O$_3$ glass, the specimen with 7.5 wt% showed the highest shrinkage. Specimens with complex addition of ZnO-B$_2$O$_3$ glass with CuO or Bi$_2$O$_3$ showed higher shrinkages and initial permeabilities than single addition of ZnO-B$_2$O$_3$ glass. Shrinkages and initial permeabilities of the specimens with ZnO-Bi$_2$O$_3$ glass were higher than those of ZnO-B$_2$O$_3$ glass addition.

Preparation and Electrical Conductivity of CuO-Bi2O3-V2O5 Glass for Solid State Batteries

  • Jeong, Dong-Jin;Park, Hee-Chan;Lee, Heun-Soo;Park, Chan-Young
    • The Korean Journal of Ceramics
    • /
    • v.5 no.2
    • /
    • pp.183-188
    • /
    • 1999
  • The crystallization behavior and electrical conductivity of the $CuO-Bi_2O_3-V_2O_5$ glasses with various CuO content were investigated. The glass formation regin was 0~20 mol% Bi2O3, 5~55 mol% CuO, and 30~90 mol% $V_2O_5$ with Tg=$275^{\circ}C$~$290^{\circ}C$. Among glasses with various compositions, the 31CuO-$14Bi_2O_3-55V_2O_5$ (mol%) glass heat-treated at $358^{\circ}C$ for 8 h showed the highest conductivity of ~ at room temperature. The heat-treated glasses increased in electrical conductivity by the order of 104 compared to non heat-treated glass. The linear relationship between 1n($\sigma$T)and $T^{-1}$ indicated that electrical conduction in the 31CuO-$14Bi_2O_3-55V_2O_5$ (mol%) glass occurred by a small polaron hopping.

  • PDF

Visible-light Photocatalytic Activity of BiOCl/Bi3O4Cl Nanocomposites

  • Gao, Bifen;Chakraborty, Ashok Kumar;Yang, Ji-Min;Lee, Wan-In
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.7
    • /
    • pp.1941-1944
    • /
    • 2010
  • The heterojunction structures of BiOCl/$Bi_3O_4Cl$, exhibiting considerable visible-light photocatalytic efficiency, were prepared by a simple wet-chemical process at ambient condition. The prepared nanocomposites were characterized by XRD, TEM, and UV-visible diffuse reflectance spectra. Under visible light (${\lambda}\geq$420 nm) irradiation, BiOCl/$Bi_3O_4Cl$ exhibited an enhanced photocatalytic activity in decomposing 2-propanol (IP) in gas phase and salicylic acid (SA) in aqueous solution, whereas the bare BiOCl and $Bi_3O_4Cl$ showed negligible activities. It is deduced that the remarkable visible-light photocatalytic activity of the BiOCl/$Bi_3O_4Cl$ originates from the hole $(h^+)$ transfer between VB of the $Bi_3O_4Cl$ and BiOCl semiconductors.

Preparation of dielectric Bi4-xLaxTi3O12 (x~2) from K2La2Ti3O10 via exfoliation and restacking routes (박리화와 재적층법을 통한 K2La2Ti3O10부터 유전성 Bi4-xLaxTi3O12(x~2)의 합성)

  • Jeon, A Young;Ko, Jieun;Kim, Jong-Young
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.23 no.1
    • /
    • pp.14-19
    • /
    • 2013
  • We have successfully synthesized $Bi_{4-x}La_xTi_3O_{12}$ (x~2) having Aurivillius-type layered perovskite structure from exfoliated layered perovskite oxide of $K_2La_2Ti_3O_{10}$ with Ruddlesden-Popper structure. The reaction between the exfoliated lanthanum titanate nanosheets and BiOCl nanocrystal resulted in the formation of polycrystalline $Bi_{4-x}La_xTi_3O_{12}$ (x~2) after heating above $700^{\circ}C$. Colloidal suspension of the nanosheets could be obtained by intercalating ethylamine (EA) into the protonated lanthanum titanate, $H_2La_2Ti_3O_{10}$, derived from $K_2La_2Ti_3O_{10}$. Transmission electron microscopic (TEM) analysis show that the exfoliated lanthanium titanate nanosheets have a thickness of a few nano meters. According to X-ray diffraction (XRD) analysis, the exfoliated lanthanium titanate was found to be transformed into $Bi_{4-x}La_xTi_3O_{12}$ (x~2) after restacking with BiOCl and subsequent thermal treatment at > $700^{\circ}C$.

Preparation and Magnetic Properties of Amorphous Spinel Ferrite (비정질 Spinel Ferrite의 제조와 그 자기적 특성)

  • 김태옥;김창곤
    • Journal of the Korean Magnetics Society
    • /
    • v.2 no.1
    • /
    • pp.29-36
    • /
    • 1992
  • The fundamental research about the amorphous ferrite, which is expected as the important material for electronic and information imdustry in future, was carried out in this work. Because the ferromagnetic amorphous ferrites reported recently are very inferior in magnetic properties than the crystalline ferrites, the development of the more ferromagnetic amorphous ferrites is required. In order to obtain the fundamental data for the preparation of amorphous ferrites, the hand-made twin-roller quenching apparatus was used for rapid quenching. Investigation on amorphous ferrite in the system $CaO-Bi_{2}O_{3}-Fe_{2}O_{3}$ has been carried out in the composition of 10-50 mole% CaO, 10-50 mole% $Bi_{2}O_{3}$, 40-70 mole% $Fe_{2}O_{3}$. Large magnetization values were obtained near the composition of the mixture of $BiFeO_{3}$ and $CaFe_{4}O_{7}$. Especially, an amorphous ${(CaO)}_{20}{(Bi_{2}O_{3})_{15}{(Fe_{2}O_{3})}_{65}$ specimen has a magmetization value of about 21.84 emu/g at 0K(10 kOe). Fe $M\"{o}ssbauer$ absorption spectrum indicates that this specimen is compsed of two amorphous phases, antiferromagnetic phase($\alpha$-phase) and ferromagnetic phase($\beta$-phase). Crystallization of this amorphous ferrite was happened in steps-$550^{\circ}C$ and $775^{\circ}C$, then observed crystal phases were perovskite phase of $BiFeO_{3}$ and $Fe_{2}O_{3}$ phase.

  • PDF

Thermoelctric Propretries of Bi2Te3 Fabricated by Mechanical Grinding-Mixing Process (기계적분쇄-혼합공정에 의해 제조된 Bi2Te3 소결체의 열전특성)

  • 이근길
    • Journal of Powder Materials
    • /
    • v.7 no.1
    • /
    • pp.6-11
    • /
    • 2000
  • Two kinds of Bi2Te3 powders, pure Bi2Te3/2vol.%ZrO2, have been prepared by a mechanical grinding process process. Effect of mixing of the powders on thermoelectric of the sintered body has been investigated by measuring Seebeck Coeffcient, specific electric resistivity and thermal conductivity. With an increase in the weight fraction of the Bi2Te3/2vol.%ZrO2 powder from 0 to 40wt.%. Especially, the figure of merit of the mixedBi2Te3 sintered body increases and thereafter dedreases above 40wt.%. Especially. the figure of merit of the mixed Bi2Te3 sintered bodies with mixing of Bi2Te3/2vol.%ZrO2 powder increased about 1.3time in comparison with the value of the specimen before mixing. Mixing of two kinds of Bi2Te3 powders which have different theramal and electric propertries with each other seemed to be useful methob to increase the figure of merit of Bi2Te3 sintered body.

  • PDF

Effects of Al2O3 Coating on BiVO4 and Mo-doped BiVO4 Film for Solar Water Oxidation

  • Arunachalam, Maheswari;Yun, Gun;Lee, Hyo Seok;Ahn, Kwang-Soon;Heo, Jaeyeong;Kang, Soon Hyung
    • Journal of Electrochemical Science and Technology
    • /
    • v.10 no.4
    • /
    • pp.424-432
    • /
    • 2019
  • Planar BiVO4 and 3 wt% Mo-doped BiVO4 (abbreviated as Mo:BiVO4) film were prepared by the facile spin-coating method on fluorine doped SnO2(FTO) substrate in the same precursor solution including the Mo precursor in Mo:BiVO4 film. After annealing at a high temperature of 450℃ for 30 min to improve crystallinity, the films exhibited the monoclinic crystalline phase and nanoporous architecture. Both films showed no remarkably discrepancy in crystalline or morphological properties. To investigate the effect of surface passivation exploring the Al2O3 layer, the ultra-thin Al2O3 layer with a thickness of approximately 2 nm was deposited on BiVO4 film using the atomic layer deposition (ALD) method. No distinct morphological modification was observed for all prepared BiVO4 and Mo:BiVO4 films. Only slightly reduced nanopores were observed. Although both samples showed some reduction of light absorption in the visible wavelength after coating of Al2O3 layer, the Al2O3 coated BiVO4 (Al2O3/BiVO4) film exhibited enhanced photoelectrochemical performance in 0.5 M Na2SO4 solution (pH 6.5), having higher photocurrent density (0.91 mA/㎠ at 1.23 V vs. reversible hydrogen electrode (RHE), briefly abbreviated as VRHE) than BiVO4 film (0.12 mA/㎠ at 1.23 VRHE). Moreover, Al2O3 coating on the Mo:BiVO4 film exhibited more enhanced photocurrent density (1.5 mA/㎠ at 1.23 VRHE) than the Mo:BiVO4 film (0.86 mA/㎠ at 1.23 VRHE). To examine the reasons, capacitance measurement and Mott-Schottky analysis were conducted, revealing that the significant degradation of capacitance value was observed in both BiVO4 film and Al2O3/Mo:BiVO4 film, probably due to degraded capacitance by surface passivation. Furthermore, the flat-band potential (VFB) was negatively shifted to about 200 mV while the electronic conductivities were enhanced by Al2O3 coating in both samples, contributing to the advancement of PEC performance by ultra-thin Al2O3 layer.

A study on reactive chlorine species generation enhanced by heterojunction structures on surface of IrO2-based anodes for water treatment (IrO2 기반 수처리용 산화 전극의 표면 이종 접합 구성에 따른 활성 염소종 발생 증진 특성 연구)

  • Hong, Sukhwa;Cho, Kangwoo
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.32 no.4
    • /
    • pp.349-355
    • /
    • 2018
  • This study interrogated multi-layer heterojunction anodes were interrogated for potential applications to water treatment. The multi-layer anodes with outer layers of $SnO_2/Bi_2O_3$ and/or $TiO_2/Bi_2O_3$ onto $IrO_2/Ta_2O_5$ electrodes were prepared by thermal decomposition and characterized in terms of reactive chlorine species (RCS) generation in 50 mM NaCl solutions. The $IrO_2/Ta_2O_5$ layer on Ti substrate (Anode 1) primarily served as an electron shuttle. The current efficiency (CE) and energy efficiency (EE) for RCS generation were significantly enhanced by the further coating of $SnO_2/Bi_2O_3$ (Anode 2) and $TiO_2/Bi_2O_3$ (Anode 3) layers onto the Anode 1, despite moderate losses in electrical conductivity and active surface area. The CE of the Anode 3 was found to show the highest RCS generation rate, whereas the multi-junction architecture (Anode 4, sequential coating of $IrO_2/Ta_2O_5$, $SnO_2/Bi_2O_3$, and $TiO_2/Bi_2O_3$) showed marginal improvement. The microscopic observations indicated that the outer $TiO_2/Bi_2O_3$ could form a crack-free layer by an incorporation of anatase $TiO_2$ particles, potentially increasing the service life of the anode. The results of this study are expected to broaden the usage of dimensionally stable anodes in water treatment with an enhanced RCS generation and lifetime.