• Title/Summary/Keyword: $BaTi_4O_9$

Search Result 114, Processing Time 0.03 seconds

Surface Modification of Ba0.6Sr0.4TiO3 by Trimethylsilyl Chloride as a Silylation Agent (Trimethylsilyl Chloride를 Silylation Agent로 사용한 Ba0.6Sr0.4TiO3 나노입자의 표면개질 연구)

  • Lee, Chan;Han, Wooje;Park, Hyung-Ho
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.26 no.4
    • /
    • pp.127-132
    • /
    • 2019
  • In this study, barium strontium titanate (BSTO) with high dielectric perovskite structure was synthesized by liquid-solid solution synthesis and the surface was modified using trimethylsilyl chloride (TMCS) as a silylation agent. Silylation surface modification is a method of reacting -OH ligand on the surface of BSTO nanoparticles with Cl in TMCS to generate HCl and replacing the ligand on the surface of nanoparticles with -Si, -CH3. Silylation was optimized by varying the concentration of TMCS, and the structure of the silicon network was confirmed by Fourier-transform infrared spectroscopy. In addition, the crystallinity of BSTO nanoparticles was confirmed by X-ray diffractometer and the size of the nanoparticles was calculated using Scherrer equation. The field emission scanning electron microscopic image observed the change of the surface-modified BSTO particle size, and the contact angle measurement confirmed the hydrophobic property of the contact angle of 120.9° in the optimized nanoparticles. Finally, the surface-modified BSTO dispersion experiment in de-ionized water confirmed the hydrophobic degree of the nanoparticles.

Fabrication and Properties of Thin Microwave Absorbers of Ferroelectric Materials Used in Mobile Telecommunication Frequency Bands (강유전체를 이용한 이동통신주파수 대역용 박형 전파흡수체의 제조 및 특성)

  • Lee, Yeong-Jong;Yun, Yeo-Chun;Kim, Seong-Su
    • Korean Journal of Materials Research
    • /
    • v.12 no.2
    • /
    • pp.160-165
    • /
    • 2002
  • High-frequency dielectric and microwave absorbing properties have been investigated in ferroelectric materials (BaTiO$_3$(BT), (1-x)Pb$Mg_{\frac{1}{3}}Nb_{\frac{2}{3}}$)O$_3$-xPbTiO$_3$(PMN-PT), (1-x)Pb$Mg_{\frac{1}{3}}Nb_{\frac{2}{3}}$O$_3$-xPb(Zn_{\frac{1}{3}}Nb_{\frac{2}{3}}$)O$_3$(PMN-PZN) for the aim of thin microwave absorbers in the frequency range of mobile telecommunication. The specimenns are prepared by conventional ceramic processing and complex permittivity has been measured by transmission/reflection method. The ferroelectric materials show high dielectric constant and dielectric loss in the microwave range and their domiant loss mechanism is considered to be domain wall relaxation. The microwave absorbance of BT 0.9PMN-0.1PT, and 0.8PMN-0.2PZN specimen (determined at 2) are found to be 99.5% (at a thickness of 4.5 mm), 50% (2.5 mm), and 30% (2.5 mm), respectively. It is suggested that PMN-PT or PMN-PZN ferroelectrics are good candidate materials for the spacer of λ/4 absorber. The use of ferroelectric materials is effective in reducing the thickness of absorber with their advantage of high dielectric constant.

Comparison of Abnormal Grain Growth Behavior of Lead-Free (Na,K)NbO3-M(Cu,Nb)O3, (M = Ca, Sr, Ba) Piezoelectric Ceramics (비납계 (Na,K)NbO3-M(Cu,Nb)O3, (M = Ca, Sr, Ba) 압전 세라믹의 비정상 결정 성장 거동 비교)

  • Jung, Seungwoon;Lim, Ji-Ho;Jung, Han-Bo;Ji, Sung-Yub;Choi, Seunggon;Jeong, Dae-Yong
    • Korean Journal of Materials Research
    • /
    • v.30 no.7
    • /
    • pp.343-349
    • /
    • 2020
  • NKN [(Na,K)NbO3] is a candidate lead-free piezoelectric material to replace PZT [Pb(Zr,Ti)O3]. A single crystal has excellent piezoelectric-properties and its properties are dependent of the crystal orientation direction. However, it is hard to fabricate a single crystal with stoichiometrically stable composition due to volatilization of sodium during the growth process. To solve this problem, a solid solution composition is designed (Na,K)NbO3-Ba(Cu,Nb)O3 and solid state grain growth is studied for a sizable single crystal. Ceramic powders of (Na,K)NbO3-M(Cu,Nb)O3 (M = Ca, Sr, Ba) are synthesized and grain growth behavior is investigated for different temperatures and times. Average normal grain sizes of individual specimens, which are heat-treated at 1,125 ℃ for 10 h, are 6.9, 2.8, and 1.6 ㎛ for M = Ca, Sr, and Ba, respectively. Depending on M, the distortion of NKN structure can be altered. XRD results show that (NKN-CaCuN: shrunken orthorhombic; NKN-SrCuN: orthorhombic; NKN-BaCuN: cubic). For the sample heat-treated at 1,125 ℃ for 10 h, the maximum grain sizes of individual specimens are measured as 40, 5, and 4,000 ㎛ for M = Ca, Sr, and Ba, respectively. This abnormal grain size is related to the partial melting temperature (NKN-CaCuN: 960 ℃; NKN-SrCuN: 971 ℃; NKN-BaCuN: 945 ℃).

Effect of Passivation on the Sintering Behavior of Submicron Nickel Powder Compacts for MLCC Application

  • Jo, Gi-Young;Lee, Kwi-Jong;Kang, Suk-Joong L.
    • Journal of Powder Materials
    • /
    • v.20 no.6
    • /
    • pp.405-410
    • /
    • 2013
  • During sintering of Ni-electrode multi-layer ceramic capacitors (MLCCs), the Ni electrode often becomes discontinuous because of its lower sintering temperature relative to that of $BaTiO_3$. In an attempt to retard the sintering of Ni, we introduced passivation of the Ni powder. To find the optimal passivation conditions, a thermogravimetric analysis (TGA) was conducted in air. After passivation at $250^{\circ}C$ for 11 h in air, a nickel oxide shell with a thickness of 4-5 nm was formed on nickel nanoparticles of 180 nm size. As anticipated, densification of the compacts of the passivated Ni/NiO core-shell powder was retarded: the starting temperature of densification increased from ${\sim}400^{\circ}C$ to ${\sim}600^{\circ}C$ in a $97N_2-3H_2$ (vol %) atmosphere. Grain growth was also retarded during sintering at temperatures of 750 and $1000^{\circ}C$. When the sintering atmosphere was changed from wet $99.93N_2-0.07H_2$ to wet $99.98N_2-0.02H_2$, the average grain size decreased at the same sintering temperature. The conductivity of the passivated powder sample sintered at $1150^{\circ}C$ for 8 h in wet $99.93N_2-0.07H_2$ was measured to be $3.9{\times}10^4S/cm$, which is comparable with that, $4.6{\times}10^4S/cm$, of the Ni powder compact without passivation. These results demonstrate that passivation of Ni is a viable means of retarding sintering of a Ni electrode and hence improving its continuity in the fabrication of $BaTiO_3$-based multi-layer ceramic capacitors.

Characterization of BST Thin Films using MgO(100) Buffer Layer for Tunable Device

  • Lee Cheol-In;Kim Kyoung-Tae;Kim Chang-Il
    • Transactions on Electrical and Electronic Materials
    • /
    • v.7 no.2
    • /
    • pp.67-71
    • /
    • 2006
  • In this paper, we have investigated the structure and dielectric properties of the $(Ba_{0.6}Sr_{0.4})TiO_3$ (BST) thin films fabricated on MgO(100)/Si substrate by an alkoxide-based sol-gel method. Both the structure and morphology of those films were analyzed by x-ray diffraction (XRD) and atomic force microscope (AFM). For the MgO(100)/Si substrate, the BST thin films exhibited highly (100) orientation. The highly (100)-oriented BST thin films showed high dielectric constant, tunability, and figure of merit (FOM). The dielectric constant, dielectric loss and tunability of the BST thin films annealed at $700^{\circ}C$ deposited on the MgO(100)/Si substrate measured at 10 kHz were 515.9, 0.0082, and 54.3%, respectively.

A comparative study on the flux pinning properties of Zr-doped YBCO film with those of Sn-doped one prepared by metal-organic deposition

  • Choi, S.M.;Shin, G.M.;Joo, Y.S.;Yoo, S.I.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.15 no.4
    • /
    • pp.15-20
    • /
    • 2013
  • We investigated the flux pinning properties of both 10 mol% Zr-and Sn-doped $YBa_2Cu_3O_{7-{\delta}}$ (YBCO) films with the same thickness of ~350 nm for a comparative purpose. The films were prepared on the $SrTiO_3$ (STO) single crystal substrate by the metal-organic deposition (MOD) process. Compared with Sn-doped YBCO film, Zr-doped one exhibited a significant enhancement in the critical current density ($J_c$) and pinning force density ($F_p$). The anisotropic $J_{c,min}/J_{c,max}$ ratio in the field-angle dependence of $J_c$ at 77 K for 1 T was also improved from 0.23 for Sn-doped YBCO to 0.39 for Zr-doped YBCO. Thus, the highest magnetic $J_c$ values of 9.0 and $2.9MA/cm^2$ with the maximum $F_p$ ($F_{p,max}$) values of 19 and $5GN/m^3$ at 65 and 77 K for H // c, respectively, could be achieved from Zr-doped YBCO film. The stronger pinning effect in Zr-doped YBCO film is attributable to smaller $BaZrO_3$ (BZO) nanoparticles (the average size ${\approx}28.4$ nm) than $YBa_2SnO_{5.5}$ (YBSO) nanoparticles (the average size ${\approx}45.0$ nm) incorporated in Sn-doped YBCO film since smaller nanoparticles can generate more defects acting as effective flux pinning sites due to larger incoherent interfacial area for the same doping concentration.

Preparation and Field-Induced Electrical Properties of Perovskite Relaxor Ferroelectrics

  • Fan, Huiqing;Peng, Biaolin;Zhang, Qi
    • Transactions on Electrical and Electronic Materials
    • /
    • v.16 no.1
    • /
    • pp.1-4
    • /
    • 2015
  • (111)-oriented and random oriented $Pb_{0.8}Ba_{0.2}ZrO_3$ (PBZ) perovskite relaxor ferroelectric thin films were fabricated on Pt(111)/$TiO_x$/$SiO_2$/Si substrate by sol-gel method. Nano-scaled antiferroelectric and ferroelectric two-phase coexisted in both (111)-oriented and random oriented PBZ thin film. High dielectric tunability (${\eta}=75%$, E = 560 kV/cm) and figure-of-merit (FOM ~ 236) at room temperature was obtained in (111)-oriented thin film. Meanwhile, giant electrocaloric effect (ECE) (${\Delta}T=45.3K$ and ${\Delta}S=46.9JK^{-1}kg^{-1}$ at $598kVcm^{-1}$) at room temperature (290 K), rather than at its Curie temperature (408 K), was observed in random oriented $Pb_{0.8}Ba_{0.2}ZrO_3$ (PBZ) thin film, which makes it a promising material for the application to cooling systems near room temperature. The giant ECE as well as high dielectric tunability are attributed to the coexistence of AFE and FE phases and field-induced nano-scaled AFE to FE phase transition.

The fabrication and analysis of BSCT thick films for uncooled infrared detectors (비냉각 검출기를 위한 BSCT 후막의 제작과 특성 분석)

  • Noh, Hyun-Ji;Lee, Sung-Gap;Bae, Seon-Gi
    • Proceedings of the KIEE Conference
    • /
    • 2008.10a
    • /
    • pp.171-172
    • /
    • 2008
  • $(Ba_{0.57}Sr_{0.33}Ca_{0.10})TiO_3$ (BSCT) thick films doped with 0.1 mol% $MnCO_3$ and $Yb_2O_3$ ($0.1{\sim}0.7$ mol%) were fabricated by the screen printing method on the alumina substrate. And the structural and electrical properties as a function of $Yb_2O_3$ amount were investigated. The lattice constants of the BSCT thick film doped with 0.1 mol% is 0.3955 nm. The specimen doped with 0.7 mol% $Yb_2O_3$ showed dense and uniform grains with diameters of about 6.3 mm. The thickness of all BSCT thick films was approximately 60 mm. The Curie temperature of the BSCT specimen doped with 0.1 mol% $Yb_2O_3$ was $18^{\circ}C$, and the dielectric constantand dielectric loss at this temperature was 4637 and 4.2%, respectively. The BSCT specimen doped with 0.1 mol% $Yb_2O_3$ showed the maximum value of $349{\times}10^{-9}C/cm^2K$ at Curie temperature. The figure of merit $F_D$ for specific detectivity of the specimens doped with 0.1 mol% $Yb_2O_3$ showed the highest value of $10.9{\times}10^{-9}Ccm/J$.

  • PDF

Design and Fabrication of Thin Microwave Absorbers of ITO/Dielectric Structures Used for Mobile Telecommunication Frequency Bands (ITO박막/세라믹유전체 구조의 이동통신 주파수대역용 박형 전파흡수체의 설계 및 제조)

  • Yoon, Yeo-Choon;Kim, Sung-Soo
    • Korean Journal of Materials Research
    • /
    • v.13 no.4
    • /
    • pp.259-265
    • /
    • 2003
  • For the aim of thin microwave absorbers used in mobile telecommunication frequency band, this study proposed a high permittivity dielectrics(λ/4 spacer) coated with ITO thin films of 377 $\Omega$/sq(impedance transformer). High frequency dielectric properties of ferroelectric ceramics, electrical properties of ITO thin films and microwave absorbing properties of ITO/dielectrics were investigated. Ferroelectric materials including $BaTiO_3$(BT), 0.9Pb($Mg_{1}$3/Nb$_{2}$3/)$O_3$-0.1 $PbTiO_3$(PMN-PT), 0.8 Pb (Mg$_{1}$3/$Nb_{2}$3/)$O_3$-0.2 Pb($Zn_{1}$3$_Nb{2}$3/)$O_3$(PMN-PZN) were prepared by ceramic processing for high permittivity dielectrics,. The ferroelectric materials show high dielectric constant and dielectric loss in the microwave frequency range. The microwave absorbance (at 2 ㎓) of BT, 0.9PMN-0.1PT, and 0.8PMN-0.2PZN were found to be 60%(at a thickness of 3.5 mm), 20% (2.5 mm), and 30% (2.5 mm), respectively. By coating the ITO thin films on the ferroelectric substrates with λ/4 thickness, the microwave absorbance is greatly improved. Particularly, when the surface resistance of ITO films is closed of 377 $\Omega$/sq, the reflection loss is reduced to -20 ㏈(99% absorbance). This is attributed to the wave impedance matching controlled by ITO thin films at a given thickness of high permittivity dielectrics of λ/4 (3.5 mm for BT, 2.5 mm for PMN-PT and PMN-PZN at 2 ㎓). It is, therefore, successfully proposed that the ITO/ferroelectric materials with controlled surface resistance and high dielectric constant can be useful as a thin microwave absorbers in mobile telecommunication frequency band.

Relation between Metamorphic P-T Conditions and Boron Concentrations of Metasedimentary Rocks and Biotite Granitic Gneisses from NE Yeongnam Massif around Samcheok Area, South Korea (영남 육괴 북동부 변성퇴적암과 흑운모 화강편마암의 변성 온도-압력 조건과 전압 붕소 함량사이의 상관관계)

  • Cheong, Won-Seok;Sun, Gwang-Min;Na, Ki-Chang
    • Economic and Environmental Geology
    • /
    • v.42 no.3
    • /
    • pp.247-259
    • /
    • 2009
  • This study is focused on the relationship between whole rock boron contents and metamorphic P-T conditions of metasedimentary rocks from northeastern Yeongnam massif around Samcheok area, Korea. Metamorphic P-T conditions of sillimanite and garnet zones based on the Ti-biotite geothermometer is 553-687$^{\circ}C$ and 582-722$^{\circ}C$ at 4-6 kbar, respectively. In the metasedimentary rocks, boron contents in whole rock decrease with increasing metamorphic grade, from sillimanite zone (9.60-189 ppm B) to garnet zone (2.63-15.97 ppm B), except one sample (90.9 ppm B) from garnet zone containing graphites. Boron depletion in garnet zone has relation with mode of tourmaline which are broken down with increasing metamorphic temperature. Boron contents are indirectly proportional to major and trace elements such as $Al_2O_3$, MgO, $Fe_2O_3$, $K_2O$, Li, Ba, Sc, Co, Cr, Rb and Cs that are abundant in tourmalines. In conclustion, tourmalines and graphite are modulator of boron contents in metasedimentary rocks. In the biotite granitic gneisses, boron contents (2.62-12.2 ppm B) are similar or lower than those of metasedimentary rocks and have no relation with metamorphic P-T conditions.