• 제목/요약/키워드: $Al_O_3$magnetron sputtering

검색결과 284건 처리시간 0.027초

Rear Surface Passivation with Al2O3 Layer by Reactive Magnetron Sputtering for High-Efficiency Silicon Solar Cell

  • Moon, Sun-Woo;Kim, Eun-Kyeom;Park, Won-Woong;Jeon, Jun-Hong;Choi, Jin-Young;Kim, Dong-Hwan;Han, Seung-Hee
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2012년도 제42회 동계 정기 학술대회 초록집
    • /
    • pp.211-211
    • /
    • 2012
  • The electrical loss of the photo-generated carriers is dominated by the recombination at the metal- semiconductor interface. In order to enhance the performance of the solar cells, many studies have been performed on the surface treatment with passivation layer like SiN, SiO2, Al2O3, and a-Si:H. In this work, Al2O3 thin films were investigated to reduce recombination at surface. The Al2O3 thin films have two advantages, such as good passivation properties and back surface field (BSF) effect at rear surface. It is usually deposited by atomic layer deposition (ALD) technique. However, ALD process is a very expensive process and it has rather low deposition rate. In this study, the ICP-assisted reactive magnetron sputtering method was used to deposit Al2O3 thin films. For optimization of the properties of the Al2O3 thin film, various fabrication conditions were controlled, such as ICP RF power, substrate bias voltage and deposition temperature, and argon to oxygen ratio. Chemical states and atomic concentration ratio were analyzed by x-ray photoelectron spectroscopy (XPS). In order to investigate the electrical properties, Al/(Al2O3 or SiO2,/Al2O3)/Si (MIS) devices were fabricated and characterized using the C-V measurement technique (HP 4284A). The detailed characteristics of the Al2O3 passivation thin films manufactured by ICP-assisted reactive magnetron sputtering technique will be shown and discussed.

  • PDF

NdFeB 영구자석에의 Al/Al2O3 다층막 코팅 및 부식 특성 (Preparation of Al/Al2O3 Multilayer Coatings on NdFeB Permanent Magnet and their Corrosion Characteristics)

  • 정재인;양지훈
    • 한국표면공학회지
    • /
    • 제42권2호
    • /
    • pp.86-94
    • /
    • 2009
  • Various types of multilayer coatings including Al/$Al_2O_3$ structure have been prepared on Nd-Fe-B permanent magnet to modify the morphology of the coating and to enhance the corrosion resistance of the magnet. Magnetron sputtering has been employed to make the multilayer coatings. $Al_2O_3$sputtering conditions were optimized in reactive sputtering by varying the deposition parameters. The formation of $Al_2O_3$ film was confirmed from the binding energy shift measured by electron spectroscopy for chemical analysis. 3 types of coating structures were designed and prepared by magnetron sputtering. The coating structures consist of (1) single Al coating, (2) modified coatings having oxide or plasma treated layer in the middle of coating structure, and (3) Al/$Al_2O_3$ multilayer coatings. Surface and cross-sectional morphologies showed that Al/$Al_2O_3$ multilayer grew as a layered structure, and that very compact Zone 3 like structure were formed. X-ray diffraction peak showed that the crystal orientations of multilayer coatings were similar to that of the bulk powder pattern. Hardness increased drastically when the Al thickness was around 1im in the Al/$Al_2O_3$ multilayer. From the salt spray test and pressure cooker test, it has been shown that the multilayer coatings showed good corrosion resistance compared to Al single or modified layer coatings.

Realization and Analysis of p-Type ZnO:Al Thin Film by RF Magnetron Sputtering

  • Jin, Hu-Jie;Jeong, Yun-Hwan;Park, Choon-Bae
    • Transactions on Electrical and Electronic Materials
    • /
    • 제9권2호
    • /
    • pp.67-72
    • /
    • 2008
  • Al-doped p-type ZnO thin films were fabricated by RF magnetron sputtering on n-Si (100) and homo-buffer layers in pure oxygen ambient. ZnO ceramic mixed with 2 wt% $Al_2O_3$ was selected as a sputtering target. XRD spectra show that the Al-doped ZnO thin films have ZnO crystal structure. Hall Effect experiments with Van der Pauw configuration show that p-type carrier concentrations are arranged from $1.66{\times}10^{16}$ to $4.04{\times}10^{18}\;cm^{-2}$, mobilities from 0.194 to $198\;cm^2V{-1}s^{-1}$ and resistivities from 0.0963 to $18.4\;{\Omega}cm$. FESEM cross section images of different parts of a p-type ZnO:Al thin film annealed at $800^{\circ}C$ show a compact structure. Measurement for same sample shows that density is $5.40\;cm^{-3}$ which is smaller than theoretically calculated value of $5.67\;cm^{-3}$. Photoluminescence (PL) spectra at 10 K show a shoulder peak of p-type ZnO film at about 3.117 eV which is ascribed to electron transition from donor level to acceptor level (DAP).

Implementation of High Carrier Mobility in Al-N Codoped p-Type ZnO Thin Films Fabricated by Direct Current Magnetron Sputtering with ZnO:Al2O3 Ceramic Target

  • Jin, Hujie;Xu, Bing;Park, Choon-Bae
    • Transactions on Electrical and Electronic Materials
    • /
    • 제12권4호
    • /
    • pp.169-173
    • /
    • 2011
  • In this study, Al-N codoped p-type zinc oxide (ZnO) thin films were deposited on Si and homo-buffer layer templates in a mixture of $N_2$ and $O_2$ gas with ceramic ZnO:(2 wt% $Al_2O_3$) as a sputtering target using DC- magnetron sputtering. X-ray diffraction spectra of two-theta diffraction showed that all films have a predominant (002) peak of ZnO Wurtzite structure. As the $N_2$ fraction in the mixed $N_2$ and $O_2$ gases increased, field emission secondary electron microscopy revealed that the surface appearance of codoped films on Si varied from smooth to textured structure. The p-type ZnO thin films showed carrier concentration in the range of $1.5{\times}10^{15}-2.93{\times}10^{17}\;cm^{-3}$, resistivity in the range of 131.2-2.864 ${\Omega}cm$, and mobility in the range of $3.99-31.6\;cm^2V^{-1}s^{-1}$ respectively.

D.C. Magnetron Sputter를 이용한 (Ti, Al)N 피막의 고온산화특성 (High Temperature Oxidation Characteristics of the (Ti, Al)N Coating on the STS 304 by D.C. Magnetron Sputtering)

  • 최장현;이상래
    • 한국표면공학회지
    • /
    • 제25권5호
    • /
    • pp.235-252
    • /
    • 1992
  • (Ti, Al)N films were deposited on 304 stainless steel sheet by D.C. magnetron sputtering using Al target and Ti plate. The high temperature oxidation of (T, Al)N films with the variation of composition has been investigated. The chemical composition of (Ti, Al)N films with the variation of composition has been investigated. The chemical composition of (Ti, Al)N films was similar to the sputter area ratio of titanium to aluminum target by means of EDS and AES survey. The high temperature oxidation test of (Ti, Al)N showed that (Ti, Al)N has better high temperature resistance than TiN and TiC films. TiC films were cracked at 40$0^{\circ}C$ in air TiN films quickly were oxidised at $600^{\circ}C$, were spalled more than $700^{\circ}C$. But (Ti, Al)N films are relatively stable to$ 900^{\circ}C$. The good resistance to high temperature oxida-tion of (Ti, Al)N films are due to the formation of dense Al2O3 and TiO2 oxide layer. Especially, Al2O3 oxide layer is more important. The results obtained from this study show, it is believe that the (Ti, Al)N film by D.C. magnetron sputtering is promising for the use of high temperature and wear resistance mate-rials.

  • PDF

PL Property of Al-N Codoped p-type ZnO Thin Films Fabricated by DC Magnetron Sputtering

  • Liu, Yan-Yan;Jin, Hu-Jie;Park, Choon-Bae;Hoang, Geun-C.
    • Transactions on Electrical and Electronic Materials
    • /
    • 제10권3호
    • /
    • pp.89-92
    • /
    • 2009
  • High-quality Al-N doped p-type ZnO thin films were deposited on Si and buffer layer/Si by DC magnetron sputtering in a mixture of $N_2$ and $O_2$ gas. The target was ceramic ZnO mixed with $Al_2O_3$ (2 wt%). The p-type ZnO thin films showed a carrier concentration in the range of $1.5{\times}10^{15}{\sim}2.93{\times}10^{17}\;cm^{-3}$, resistivity in the range of 131.2${\sim}$2.864 ${\Omega}cm$, mobility in the range of 3.99${\sim}$31.6 $cm^2V^{-1}s^{-l}$, respectively. It was easier to dope p-type ZnO films on Si substrates than on buffer layer/Si. The film grown on Si showed the highest quality of photoluminescence (PL) characteristics. The Al donor energy level depth $(E_d)$ of Al-N codoped ZnO films was reduced to about 50 meV, and the N acceptor energy level depth $(E_a)$ was reduced to 63 meV.

Rear Surface Passivation of Silicon Solar Cell with AlON Layer by Reactive Magnetron Sputtering

  • Moon, Sun-Woo;Kim, Eun-Kyeom;Park, Won-Woong;Kim, Kyung-Hoon;Kim, Sung-Min;Kim, Dong-Hwan;Han, Seung-Hee
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2012년도 제43회 하계 정기 학술대회 초록집
    • /
    • pp.430-430
    • /
    • 2012
  • The surface recombination velocity of the silicon solar cell could be reduced by passivation with insulating layers such as $SiO_2$, SiNx, $Al_2O_3$, a-Si. Especially, the aluminium oxide has advantages over other materials at rear surface, because negative fixed charge via Al vacancy has an additional back surface field effect (BSF). It can increase the lifetime of the hole carrier in p-type silicon. The aluminium oxide thin film layer is usually deposited by atomic layer deposition (ALD) technique, which is expensive and has low deposition rate. In this study, ICP-assisted reactive magnetron sputtering technique was adopted to overcome drawbacks of ALD technique. In addition, it has been known that by annealing aluminium oxide layer in nitrogen atmosphere, the negative fixed charge effect could be further improved. By using ICP-assisted reactive magnetron sputtering technique, oxygen to nitrogen ratio could be precisely controlled. Fabricated aluminium oxy-nitride (AlON) layer on silicon wafers were analyzed by x-ray photoelectron spectroscopy (XPS) to investigate the atomic concentration ratio and chemical states. The electrical properties of Al/($Al_2O_3$ or $SiO_2/Al_2O_3$)/Si (MIS) devices were characterized by the C-V measurement technique using HP 4284A. The detailed characteristics of the AlON passivation layer will be shown and discussed.

  • PDF

직류 Magnetron Sputter 법으로 제막된 ZnO : Al 박막의 전기광학 특성 (Electrical and Optical Properties of ZnO : Al Films Prepared by the DC Magnetron Sputtering System)

  • 김의수;유세웅;유병석;이정훈
    • 한국세라믹학회지
    • /
    • 제32권7호
    • /
    • pp.799-808
    • /
    • 1995
  • Transparent conductive films of aluminium doped zinc oxide (AZO) have been prepared by using the DC magnetron sputtering with the ZnO : Al (Al2O3 2 wt%) oxide target oriented to c-axis. Electrical and optical properties depended upon the O2/Ar gas ratio. The optical transmittance and sheet resistance of the AZO coated glass was 60~65% and 75Ω/$\square$, respectively at the O2/Ar gas ratio of 0. With the increase of the oxygen partial pressure to 2.0$\times$10-2, they were increased to the values of 81% and 1kΩ/$\square$, respectively. The films with the resistivities of 1.2~1.4$\times$10-3 Ω.cm, mobilities of 11~13 $\textrm{cm}^2$/V.sec and carrier concentrations of 3.5$\times$1020~4.0$\times$1020/㎤ were produced at the optimum O2/Ar gas ratio, which was 0.5$\times$10-2~1.0$\times$10-2. According to XRD analysis, the films have only one peak corresponding to the (002) plane, which indicates that there is a strong preferred orientation of the films. The grain size of ZnO films were calculated to 200~320 $\AA$, which was increased with the O2/Ar gas ratio and Ar gas flowrate.

  • PDF

DC 마그네트론 스터링법을 이용하여 증착한 Ga, Al, In 첨가 ZnO 박막의 특성 (Characterization of Ga, Al or In Doped ZnO Films Deposited by DC Magnetron Sputtering)

  • 박상은;박세훈;;송풍근
    • 한국표면공학회지
    • /
    • 제41권4호
    • /
    • pp.142-146
    • /
    • 2008
  • Trivalent ions(Ga, Al, In) doped ZnO films were deposited by DC magnetron sputtering on non-alkali glass substrate at substrate temperature of $300^{\circ}C$. We used the different three types of high density($95%{\sim}$) ceramic sintered disks(doped with $Ga_2O_3$; 6.65 wt%, $Al_2O_3$; 3.0 wt%, $In_2O_3$; 9.54 wt%). This study examined the effect of different dopants(Ga, Al, In) on the electrical, structural, and optical properties of the films. The lowest resistivity of $5.14{\times}10^{-4}{\Omega}cm$ and the highest optical band gap of 3.74 eV were obtained by Ga doped ZnO(GZO) film. All the films had a preferred orientation along the(002) direction, indicating that the growth orientation has a c-axis perpendicular to the substrate surface. The average transmittance of the films was more than 85% in the visible range.

Bias를 인가한 DC magnetron sputtering 법으로 증착된 ZnO:Al 박막의 구조적 특성과 RTP의 annealing에 따른 영향 (Effects of rapid thermal annealing and bias sputtering on the structure and properties of ZnO:Al films deposited by DC magnetron sputtering)

  • 박경석;이규석;이성욱;박민우;곽동주;임동건
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2005년도 하계학술대회 논문집 Vol.6
    • /
    • pp.500-501
    • /
    • 2005
  • Aluminum doped zinc oxide films (ZnO:Al) were deposited on glass substrate by DC magnetron sputtering from a ZnO target mixed with 2 wt% $Al_2O_3$. The effects of substrate bias on the electrical properties and film structure were studied. Films deposited with positive bias have been annealed at $600^{\circ}C$ using rapid thermal anneal (RTA) process. The effects of RTA on the evolution of film microstructure are to be also studied using X-ray diffraction, transmission electron microscopy, and atomic force microscopy. Positive bias sputtering may induce lattice defects caused by electron bombardments during deposition. The as-deposited film microstructure evolves from the film with high defect density to more stable film condition. The electrical properties of the films after RTA process were also studied and the results were correlated with the evolution of film microstructures.

  • PDF