• Title/Summary/Keyword: $Al_2O_3$ fiber

검색결과 122건 처리시간 0.026초

용사법과 레이저 용접을 이용한 복합소재 미세필터 연구 (A study on ceramic and metal composite material joining for micro filter using thermal spray and laser welding)

  • 송인규;최해운;김주한;윤봉한;박중언
    • 대한용접접합학회:학술대회논문집
    • /
    • 대한용접접합학회 2010년도 춘계학술발표대회 초록집
    • /
    • pp.32-38
    • /
    • 2010
  • Hybrid material(ceramic+metal) processes were developed for micro filter using ceramics coating at metal filter surface by thermal spray method, micro hole drilling at ceramic coated filter surface by femtosecond laser, and fiber laser direct welding of ceramic and metal (SUS304, SM45C) by capillary effect. Thermal spray process was used for ceramic powders and metal filters. The used ceramic powders were $Al_2O_3+40TiO_2$(Metco 131VF) powder of maximum particle size $5{\mu}m$ and ${Al_2O_3}99+$(Metco 54NS) power of maximum particle size 45m. Ceramic coated filters using thermal spray method had a great influence on powder material, particle size and coating thickness but had a fine performance as a micro filter. CW fiber laser was used to drill the top ceramic layer and melt the bottom metal layer for joining applications.

  • PDF

Effect of Reinforcing Materials on Properties of Molten Carbonate Fuel Cell Matrices

  • Moon, Young-Joon;Lee, Dokyol
    • The Korean Journal of Ceramics
    • /
    • 제2권3호
    • /
    • pp.142-146
    • /
    • 1996
  • The molten carbonate fuel cell matrices, which are usually made of high surface, fine particle size ${\gamma}-LiAlO_2$ are reinforced with coarse particles of the same material and alumina fibers. An the effects of reinforcing materials on pore characteristics, sintering properties and mechanical properties of the matrices are examined.Among the matrices examined, the highest mechanical reinforcement has been achieved in the one containing 10 wt.% coarse particles and 20 wt.% alumina fibers.

  • PDF

Er이 도핑된 졸-겔 코팅막의 발광특성 (Near IR Luminescence Properties of Er-doped Sol-Gel Films)

  • Lim, Mi-Ae;Seok, Sang-Il;Kim, Ju-Hyeun;Ahn, Bok-Yeop;Kwon, Jeong-Oh
    • 한국재료학회:학술대회논문집
    • /
    • 한국재료학회 2003년도 추계학술발표강연 및 논문개요집
    • /
    • pp.136-136
    • /
    • 2003
  • In fiber optic networks, system size and cost can be significantly reduced by development of optical components through planar optical waveguides. One important step to realize the compact optical devices is to develop planar optical amplifier to compensate the losses in splitter or other components. Planar amplifier provides optical gain in devices less than tens of centimeters long, as opposed to fiber amplifiers with lengths of typically tens of meters. To achieve the same amount of gain between the planar and fiber optical amplifier, much higher Er doping levels responsible for the gain than in the fiber amplifier are required due to the reduced path length. These doping must be done without the loss of homogeniety to minimize Er ion-ion interactions which reduce gain by co-operative upconversion. Sol-gel process has become a feasible method to allow the incorporation of Er ion concentrations higher than conventional glass melting methods. In this work, Er-doped $SiO_2$-A1$_2$ $O_3$ films were prepared by two different method via sol -Eel process. Tetraethylorthosilicate(TEOS)/aluminum secondary butoxide [Al (OC$_4$ $H_{9}$)$_3$], methacryloxypropylcnethoxysaane(MPTS)/aluminum secondary butofde [Al(OC$_4$ $H_{9}$)$_3$] systems were used as starting materials for hosting Er ions. Er-doped $SiO_2$-A1$_2$ $O_3$ films obtahed after heat-treating, coatings on Si substrate were characterized by X-ray din action, FT-IR, and N-IR fluorescence spectroscopy. The luminescence properties for two different processing procedure will be compared and discussed from peak intensity and life time.

  • PDF

자동차용 마찰재에 함유된 세라믹분말의 함량에 따른 마찰특성 (Friction Characteristics of Automotive Friction Materials with Ceramic Powder Contents)

  • 이용진;류재경;김택남
    • 한국재료학회지
    • /
    • 제19권7호
    • /
    • pp.403-406
    • /
    • 2009
  • The friction characteristics of automotive brake friction materials that contained different ceramic content were investigated. Several kinds of raw materials, such as resin-based binder, reinforcing fiber, friction restraint, abrasive, and filling materials were mixed, pressed, and heated in order to make the brake friction materials. The contents of SiC and $BaSO_4$ changed from 5 vol% to 20 vol%, respectively. In addition to this, the content of $Al_2O_3$ adjusted from 1 vol% to 16 vol%. The surface morphology of the SiC containing sample appeared rough while more debris was observed when the contents of SiC increased. This implies that the SiC containing brake composite was not adequate for the automobile. However, the relatively smooth surface was observed in samples that contained the $Al_2O_3$. But the roughness was low with a content of 11 vol% $Al_2O_3$ compared to the other samples. This is consistent with the abrasive properties of the samples. In the case of $BaSO_4$ containing samples, the smoothes surface was observed in the contents of 15 vol% $BaSO_4$. Thus, it was concluded that the 11 vol% $Al_2O_3$ and 15 vol% $BaSO_4$ containing composite would be the optimum content for the brake composite. Similar to the results of the surface morphology, the abrasion resistance consistently decreased when the content of SiC increased. On the contrary, the sample that contained 11 vol% $Al_2O_3$ and 15 vol% $BaSO_4$ showed the highest abrasion resistance compared to the other samples.

반용융 가공법에 의한 단섬유 보강 급속복합재료의 강도에 미치는 압출비와 압출온도의 영향 (Effects on extrusion ratio and temperature of shore fiber reinforcd metal matrix composites by rheo-compocating)

  • 윤한기;김석호;이상필
    • 한국해양공학회지
    • /
    • 제11권2호
    • /
    • pp.18-27
    • /
    • 1997
  • Al 6061 alloy reinforced with 10 vol.% ${\delta}-Al_2O_3$ short fiber was fabricated by Rheo-compocasting and squwwze cating. Extrusion processings were performed at temperatures from 40$0^{\circ}C$ to 55$0^{\circ}C$ with various extrusion ratio for curved shape dies. In proportion to the increase of extrusion ratios and temperatures, ultimate tensile strength for extruded materials improved. SEM observation of fractured surfsce was capcble oof accounting for fracture mechanism and bounding state of fiber and matrix.

  • PDF

연속섬유 강화 Al기 복합재료 선재의 미세조직에 미치는 가스압의 영향 (Effect of Gas Pressure Infiltration on Microstructure of Continuous Fiber Reinforced Al Matrix Composite Wire)

  • 김정훈;정동석;김진곤;김병걸
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2005년도 하계학술대회 논문집 Vol.6
    • /
    • pp.617-618
    • /
    • 2005
  • The main purpose of this study is to investigate the effect of gas pressure infiltration on microstructure. Continuous fiber reinforced Al matrix composite wire is produced by gas pressure infiltration process. With the increase of gas pressure, porosity and wettabillity was improved. No chemical reaction product was detected at the interface of $Al_2O_3$ and Al.

  • PDF

MgO-Al2O3-SiO2-ZrO2계 글라스 세라믹의 제조 및 특성 평가 (Fabrication and Characterization of MgO-Al2O3-SiO2-ZrO2 Based Glass Ceramic)

  • 윤제정;전명표;신효순;남산
    • 한국전기전자재료학회논문지
    • /
    • 제27권11호
    • /
    • pp.712-717
    • /
    • 2014
  • Glass ceramic has a high mechanical strength and low sintering temperature. So, it can be used as a thick film substrate or a high strength insulator. A series of glass ceramic samples based on MgO-$Al_2O_3-SiO_2-ZrO_2$ (MASZ) were prepared by melting at $1,600^{\circ}C$, roll-quenching and heat treatment at various temperatures from $900^{\circ}C$ to $1,400^{\circ}C$. Dependent on the heat treatment temperature used, glass ceramics with different crystal phases were obtained. Their nucleation behavior, microstructure and mechanical properties were investigated with differential thermal analysis (DTA), X-ray diffraction (XRD), scanning electron microscopy (SEM), and Vicker's hardness testing machine. With increasing the heat treatment temperature of MASZ samples, their hardness and toughness initially increase and then reach the maximum points at $1,300^{\circ}C$, and begin to decrease at above this temperature, which is likely to be due to the softening of glass ceramics. As the content of $ZrO_2$ in MAS glass ceramics increases from 7.0 wt.% to 13 wt.%, Vicker's hardness and fracture toughness increase from $853Kg/mm^2$ to $878Kg/mm^2$ and $1.6MPa{\cdot}m^{1/2}$ to $2.4MPa{\cdot}m^{1/2}$ respectively, which seems to be related with the nucleation of elongated phases like fiber.

섬유보강 규산칼슘수화물 경화체의 미세조직과 기계적 특성 (The Microstructure and Mechanical Properties of Fiber Reinforced Calcium Silicate Hydrates)

  • 엄태선;최상흘
    • 한국세라믹학회지
    • /
    • 제34권5호
    • /
    • pp.491-499
    • /
    • 1997
  • High flexible lightweight composites containing tobermorite as a main mineral is produced using various amorphous silicates, lime, cement and fibers. Here, Mechanical properties of the composites were studied by observing microstructures of hydrates and fibers. Amorphous silicates having better hydraulicity retarded the crystallization of tobermorite due to better formation of C-S-H gel in water bath curing, but, difficult conversion from C-S-H gel to tobermorite in hydrothermal reaction. In the low molar ratio of CaO/SiO2 (0.67), faster crystalization was observed dued to more impurities such as Al2O3 alkali, resulting in improving mechanical properties due to small crystal size and many contact points. It was identified that a lot of calcium silicate hydates formed at surface of pulps increase bonding strength and the crack-resistance of matrix in the composites, but decrease hardness and compressive strength. The choice of amorpous silicates having better hydraulicity, low CaO/SiO2 adding each fibers bellow about 5% in the raw mixs and lower molding pressure should be needed at improve mechanical properties of composites.

  • PDF

$\textrm{SiC}_\textrm{p}/\textrm{Al}_2\textrm{O}_{3f}/\textrm{Al}$ 복합재료의 온도에 따른 열팽창 특성 해석 (Analysis of Temperature dependent Thermal Expansion Behavior of $\textrm{SiC}_\textrm{p}/\textrm{Al}_2\textrm{O}_{3f}/\textrm{Al}$ Composites)

  • 정성욱;남현욱;정창규;한경섭
    • Composites Research
    • /
    • 제16권1호
    • /
    • pp.1-12
    • /
    • 2003
  • 본 연구는 보강재의 부피분율이 49%, 56%, 63%첨가된 패키징용 SiC/Al복합재료를 가압주조법을 통해 개발하였다. SiC/Al복합재료는 0.8%의 무기성형제와 $Al_2$O$_3$섬유가 SiC입자에 비해 부피비 1:10의 비율로 첨가되었으며 새로이 고안된 몰드에서 제조되었다. 제조된 SiC/Al복합재료에 대해 30-300 구간에서 열팽창 계수를 측정하고, FEM수치해석과 비교하여 온도에 따른 특성을 분석하였다. 실험결과 SiC/Al복한재료의 열팽창계수는 혼합법칙, Turner모델의 중간값을 가졌으며 상온에서는 Turner모델에 가깝다가 온도가 높아질수록 혼합법칙에 가까와졌다. 이러한 특성은 모재의 소성변형 및 잔류응력에 의한 것으로 본 연구에서 제안한 모재와 보강재 사이에 작용하는 평균응력 차이로부터 분석이 된다. 해석결파 모재의 소성변형이 시작되는 온도에서 SiC/Al복합재료의 열팽창계수가 급격히 증가하였으며, 가공 잔류응력은 이러한 소성변형의 시작온도를 고온으로 이동시킴으로써 열팽창계수에 영향을 끼침을 밝혔다. 이러한 일련의 연구를 통해 온도에 따른 열팽창 특성은 복수입자모델에 의한 2차인 해석을 통해 성공적으로 분석됨을 보였다.

삼중수소 검출용 광섬유 방사선 센서의 제작 및 특성분석 (Fabrication and Characterization of a Fiber-optic Radiation Sensor for Detection of Tritium)

  • 장경원;조동현;유욱재;이봉수;문주현;박병기;조영호;김신
    • 한국광학회지
    • /
    • 제20권4호
    • /
    • pp.201-206
    • /
    • 2009
  • 본 연구에서는 무기섬광체와 광섬유를 이용하여 삼중수소 검출용 광섬유 방사선 센서를 제작하였다. 무기섬광체 선택을 위해 $Gd_2O_2S$ : Tb, $Y_3Al_5O_{12}$ : Ce, CsI : Tl을 이용하여 센서팁을 제작한 후, 금속 수소화물 형태의 삼중수소를 이용하여 섬광효율이 가장 좋은 섬광체를 선별하였다. 또한 선정된 섬광체를 사용하여 제작한 센서를 이용하여 삼중수소 선원으로부터 거리에 따른 섬광량을 계측하였고 선원의 방사능 세기에 따른 섬광량을 측정하여 표면 방사능 모니터의 결과와 비교 분석하였다.