• Title/Summary/Keyword: $Al_2O_3$ Nanoparticles

Search Result 106, Processing Time 0.027 seconds

Fluid Flow Characteristics of Al2O3 Nanoparticles Suspended in Water (알루미나 나노유체의 유동 특성에 관한 연구)

  • Jang Seok-Pil;Lee Ji-Hwan
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.30 no.6 s.249
    • /
    • pp.546-552
    • /
    • 2006
  • In this paper we report fluid flow characteristics of $Al_2O_3$ nanoparicles suspended in water. Especially, the effects of volume fraction with the range of 0.01% to 0.3% and tube diameter with $310{\mu}m$ to 1.735mm on the pressure drop and the effective viscosity of $Al_2O_3$ nanoparicles suspended in water are experimentally investigated. It is shown that the effective viscosity of water-based $Al_2O_3$ nanofluids with 0.1 Vol.% through a circular tube of 1.024mm diameter is increased to about 6%. The effective viscosity from experimental results is compared with that from Einstein model. With the comparison, we show that Einstein model for determining the effective viscosity of nanofluids is not applicable to water-based $Al_2O_3$ nanofluids.

Seismic analysis of AL2O3 nanoparticles-reinforced concrete plates based on sinusoidal shear deformation theory

  • Amoli, Abolfazl;Kolahchi, Reza;Bidgoli, Mahmood Rabani
    • Earthquakes and Structures
    • /
    • v.15 no.3
    • /
    • pp.285-294
    • /
    • 2018
  • In this study, nonlinear dynamic response of a concrete plate retrofit with Aluminium oxide ($Al_2O_3$) under seismic load and magnetic field is investigated. The plate is a composite reinforced by Aluminium oxide with characteristics of the equivalent composite being determined using Mori-Tanka model considering agglomeration effect. The plate is simulated with higher order shear deformation plate model. Employing nonlinear strains-displacements, stress-strain, the energy equations of column was obtained and using Hamilton's principal, the governing equations were derived. Differential quadrature method (DQM) in conjunction with Newark method is applied for obtaining the dynamic response of structure. The influences of magnetic field, volume percent of nanoparticles, geometrical parameters of column, agglomeration and boundary conditions on the dynamic response were investigated. Results showed that with increasing volume percent of nanoparticles, the dynamic deflection decreases.

Analysis on the influence of sports equipment of fiber reinforced composite material on social sports development

  • Jian Li;Ningjiang Bin;Fuqiang Guo;Xiang Gao;Renguo Chen;Hongbin Yao;Chengkun Zhou
    • Advances in nano research
    • /
    • v.15 no.1
    • /
    • pp.49-57
    • /
    • 2023
  • As composite materials are used in many applications, the modern world looks forward to significant progress. An overview of the application of composite fiber materials in sports equipment is provided in this article, focusing primarily on the advantages of these materials when applied to sports equipment, as well as an Analysis of the influence of sports equipment of fiber-reinforced composite material on social sports development. The present study investigated surface morphology and physical and mechanical properties of S-glass fiber epoxy composites containing Al2O3 nanofillers (for example, 1 wt%, 2 wt%, 3 wt%, 4 wt%). A mechanical stirrer and ultrasonication combined the Al2O3 nanofiller with the matrix in varying amounts. A compression molding method was used to produce sheet composites. A first physical observation is well done, which confirms that nanoparticles are deposited on the fiber, and adhesive bonds are formed. Al2O3 nanofiller crystalline structure was investigated by X-ray diffraction, and its surface morphology was examined by scanning electron microscope (SEM). In the experimental test, nanofiller content was added at a rate of 1, 2, and 3% by weight, which caused a gradual decrease in void fraction by 2.851, 2.533, and 1.724%, respectively, an increase from 2.7%. The atomic bonding mechanism shows molecular bonding between nanoparticles and fibers. At temperatures between 60 ℃ and 380 ℃, Thermogravimetric Analysis (TGA) analysis shows that NPs deposition improves the thermal properties of the fibers and causes negligible weight reduction (percentage). Thermal stability of the composites was therefore presented up to 380 ℃. The Fourier Transform Infrared Spectrometer (FTIR) spectrum confirms that nanoparticles have been deposited successfully on the fiber.

Evaluation of Thermal Behavior of Oil-based $Al_2O_3$ Nanofluids (오일 기지 알루미나 나노유체의 열적거동 평가)

  • Choi, Cheol;Yoo, Hyun-Sung;Oh, Je-Myung
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.11a
    • /
    • pp.176-177
    • /
    • 2006
  • Two kinds of alumina nanofluids are prepared by dispersing $Al_2O_3$ nanoparticles m transformer oil. The thermal conductivity of the nanoparticle-oil mixtures increases with particle volume fraction and thermal conductivity of the solid particle itself. The $Al_2O_3$ nanoparticles at a volume of 0.5% can increase the thermal conductivity of the transformer oil by 5.7%, and the overall heat transfer coefficient by 20%. From the natural convection test using a prototype transformer, the cooling effect of $Al_2O_3$-oil nanofluids on the heating element and oil itself is confirmed. However, excessive quantities of the surfactant have a harmful effect on viscosity, and thus it is strongly recommended to control the addition of the surfactant with great care.

  • PDF

Thermal Conductivity and Viscosity of Distilled Water/Commercial Coolant Based $Al_2O_3$ Nanofluids (증류수-부동액 혼합 $Al_2O_3$ 나노유체의 열전도도와 점성계수)

  • Kwon, Hey-Lim;Hwang, Kyo-Sik;Jang, Seok-Pil
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.19 no.3
    • /
    • pp.130-137
    • /
    • 2011
  • Experimental investigations are conducted to figure out the feasibility of $Al_2O_3$ nanofluids as the alternative coolant for car engine. For the purpose, the thermal conductivities and viscosities of water/commercial coolant based $Al_2O_3$ nanofluids with 0.3, 1.0, 2.0 and 3.0 vol. % at temperatures ranging from $25^{\circ}C$ to $35^{\circ}C$ are measured. Thermal conductivities are measured using the transient hot-wire method and also viscosities are measured by Brookfield LVDV-III rheometer. Based on the results, it is shown that thermal conductivity of $Al_2O_3$ nanofluids with 3.0 vol. % is increased about 11% at $35^{\circ}C$ and the increment of viscosity approaches to 84% at shear rate of 600(1/s) and 80% at shear rate of 960(1/s) in the same temperature. with fundamental data for the thermal conductivity and viscosity of the nanofluids, the feasibility of $Al_2O_3$ nanofluids as the alternative coolant for car engine are discussed.

Effective Thermal Conductivities $Al_2O_3$ Nanoparticles Suspended in Water with Low Concentration (1%미만의 부피비를 가지는 알루미나 나노유체의 유효 열전도도)

  • Lee, Byeong-Ho;Kim, Jun-Ho;Kong, Yu-Chan;Jang, Seok-Pil;Koo, Ja-Ye
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.2177-2181
    • /
    • 2007
  • In this paper, effective thermal conductivities of water-based $Al_2O_3$-nanofluids with low concentration from 0.01 vol. % to 0.3 vol. % are experimentally obtained by transient hot wire method (THWM). The water-based $Al_2O_3$-nanofluids are manufactured by two-step method which is widely used. To examine suspension and dispersion characteristics of the water-based $Al_2O_3$-nanofluids, Zeta potential as well as transmission electron micrograph (TEM) is observed. We confirm the manufactured $Al_2O_3$-nanofluids have good suspension and dispersion. The effective thermal conductivities of the water-based $Al_2O_3$-nanofluids with low concentration are enhanced up to 1.64% compared with that of DI water at $21^{\circ}C$. In addition, experimental results are compared with theoretical results from Jang and Choi model.

  • PDF

An Experimental Study on Falling Film Heat and Mass Transfer for Binary Nanofluids ($H_2O$/LiBr+Nanoparticles) (이성분 나노유체($H_2O$/LiBr+나노입자)를 적용한 유하박막 흡수기의 열 및 물질전달 촉진 실험)

  • Kim, Hyun-Dae;Kim, Sung-Su;Nam, Sang-Chul;Jeong, Jin-Hee;Kang, Yong-Tae
    • Proceedings of the SAREK Conference
    • /
    • 2008.06a
    • /
    • pp.130-135
    • /
    • 2008
  • The objectives of this study are to investigate the combined heat and mass transfer enhancement using binary nanofluids as the working fluids in a $H_2O$/LiBr absorber. The result of heat and mass transfer experiment with the additives(Arabicgum, 2E1H) showed that the heat and mass transfer performance of binary nanofluid with 2E1H enhanced significantly in comparison with that without additive. In the case of 0.01wt% $Al_2O_3$ binary nanofluids with 2E1H, the vapor absorption rate increased up to 77% in comparison with that without additive. The heat transfer rate of 0.01wt% $Al_2O_3$ binary nanofluids with 2E1H increased up to 19%. Based on the experimental results, it is recommended that the $Al_2O_3$ binary nanofluid be good with 2E1H to improve the heat and mass transfer performance.

  • PDF

Improving the brittle behavior of high-strength shielding concrete blended with lead oxide, bismuth oxide, and tungsten oxide nanoparticles against gamma ray

  • Mohamed Amin;Ahmad A. Hakamy;Abdullah M. Zeyad;Bassam A. Tayeh;Ibrahim Saad Agwa
    • Structural Engineering and Mechanics
    • /
    • v.85 no.1
    • /
    • pp.29-53
    • /
    • 2023
  • High-strength shielding concrete against gamma radiation is a priority for many medical and industrial facilities. This paper aimed to investigate the gamma-ray shielding properties of high-strength hematite concrete mixed with silica fume (SF) with nanoparticles of lead dioxide (PbO2), tungsten oxide (WO3), and bismuth oxide (Bi2O3). The effect of mixing steel fibres with the aforementioned binders was also investigated. The reference mixture was prepared for high-strength concrete (HSCC) containing 100% hematite coarse and fine aggregate. Thirteen mixtures containing 5% SF and nanoparticles of PbO2, WO3, and Bi2O3 (2%, 5%, and 7% of the cement mass, respectively) were prepared. Steel fibres were added at a volume ratio of 0.28% of the volume of concrete with 5% of nanoparticles. The slump test was conducted to workability of fresh concrete Unit weight water permeability, compressive strength, splitting tensile strength, flexural strength, and modulus of elasticity tests were conducted to assess concrete's engineering properties at 28 days. Gamma-ray radiation of 137Cs emits photons with an energy of 662 keV, and that of 60Co emits two photons with energies of 1173 and 1332 keV were applied on concrete specimens to assess radiation shielding properties. Nanoparticles partially replacing cement reduced slump in workability of fresh concrete. The compressive strength of mixtures, including nanoparticles was shown to be greater, achieving 94.5 MPa for the mixture consisting of 7.5 PbO2. In contrast, the mixture (5PbO2-F) containing steel fibres achieved the highest values for splitting tensile, flexural strength, and modulus of elasticity (11.71, 15.97, and 42,840 MPa, respectively). High-strength shielded concrete (7.5PbO2) showed the best radiation protection. It also showed the minimum concrete thickness required to prevent the transmission of radiation.

Protective Metal Oxide Coatings on Zinc-sulfide-based Phosphors and their Cathodoluminescence Properties

  • Oh, Sung-Il;Lee, Hyo-Sung;Kim, Kwang-Bok;Kang, Jun-Gill
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.12
    • /
    • pp.3723-3729
    • /
    • 2010
  • We investigated the high-excitation voltage cathodoluminescence (CL) performance of blue light-emitting (ZnS:Ag,Al,Cl) and green light-emitting (ZnS:Cu,Al) phosphors coated with metal oxides ($SiO_2$, $Al_2O_3$, and MgO). Hydrolysis of the metal oxide precursors tetraethoxysilane, aluminum isopropoxide, and magnesium nitrate, with subsequent heat annealing at $400^{\circ}C$, produced $SiO_2$ nanoparticles, an $Al_2O_3$ thin film, and MgO scale-type film, respectively, on the surface of the phosphors. Effects of the phosphor surface coatings on CL intensities and aging behavior of the phosphors were assessed using an accelerating voltage of 12 kV. The MgO thick film coverage exhibited less reduction in initial CL intensity and was most effective in improving aging degradation. Phosphors treated with a low concentration of magnesium nitrate maintained their initial CL intensities without aging degradation for 2000 s. In contrast, the $SiO_2$ and the $Al_2O_3$ coverages were ineffective in improving aging degradation.

Fluid Flow Characteristics of $AL_2O_3$ Nanoparticles Suspended in Water (알루미나 나노유체의 유동 특성에 관한 연구)

  • Lee, Ji-Hwan;Jang, Seok-Pil
    • Proceedings of the SAREK Conference
    • /
    • 2005.11a
    • /
    • pp.546-551
    • /
    • 2005
  • In this paper we report fluid flow characteristics of $AL_2O_3$ nanoparicles suspended in water. Especially, the effects of volume fraction with the range of 0.01% to 0.3% and inner diameter of tubes on the pressure drop and the effective viscosity of $AL_2O_3$ nanoparicles suspended in water are experimentally investigated. Experimental results are compared with analytic solution which can be derived with Einstein model. We confirm whether Einstein model which have been used to determine the effective viscosity of nanofluids is valid or not.

  • PDF