Browse > Article
http://dx.doi.org/10.3795/KSME-B.2006.30.6.546

Fluid Flow Characteristics of Al2O3 Nanoparticles Suspended in Water  

Jang Seok-Pil (한국항공대학교 항공우주 및 기계공학과)
Lee Ji-Hwan (한국항공대학교 항공우주 및 기계공학과)
Publication Information
Transactions of the Korean Society of Mechanical Engineers B / v.30, no.6, 2006 , pp. 546-552 More about this Journal
Abstract
In this paper we report fluid flow characteristics of $Al_2O_3$ nanoparicles suspended in water. Especially, the effects of volume fraction with the range of 0.01% to 0.3% and tube diameter with $310{\mu}m$ to 1.735mm on the pressure drop and the effective viscosity of $Al_2O_3$ nanoparicles suspended in water are experimentally investigated. It is shown that the effective viscosity of water-based $Al_2O_3$ nanofluids with 0.1 Vol.% through a circular tube of 1.024mm diameter is increased to about 6%. The effective viscosity from experimental results is compared with that from Einstein model. With the comparison, we show that Einstein model for determining the effective viscosity of nanofluids is not applicable to water-based $Al_2O_3$ nanofluids.
Keywords
Nanofluids; Pressure Drop; Effective Viscosity; $Al_2O_3$;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Wang, X., Xu, X. and Choi, S. U. S., 1999, 'Thermal Conductivity of Nanoparticle-fluid Mixture,' J. Thermophysics and Heat Transfer, Vol. 13, pp. 474-480   DOI
2 Einstein, A., 1956, 'Investigation on the Theory of Brownian Movement,' Dover, New York
3 Pak, B. C. and Cho, Y. I., 1998, 'Hydrodynamic and Heat Transfer Study of Dispersed Fluids with Sub micron Metallic Oxide Particle,' Experimental Heat Transfer, Vol. 11, pp. 151-170   DOI   ScienceOn
4 Choi, S. U. S., Zhang, Z. G, Yu, w., Lockwood, F. E. and Grulke, E. A., 2001, 'Anomalous Thermal Conductivity Enhancement in Nanotube Suspensions,' Appl. Phys. Lett., Vol. 79, pp. 2252-2254   DOI   ScienceOn
5 Putra, N., Roetzel, W. and Das, S. K. 2003, 'Natural Convection of Nano-fluids,' Heat and Mass Transfer, Vol. 39, pp. 775-784   DOI   ScienceOn
6 Das, S. K., Putra, N., Thiesem, P. and Roetzel, W., 2003, 'Thermal Conductivities of Naked and Monolayer Protected Metal Nanoparticle Base Nanofluids: Manifestation of Anomalous Enhancement and Chemical Effects,' Appl. Phys. Lett., Vol. 83, pp. 2931-2933   DOI   ScienceOn
7 Jang, S. P. and Choi, S. U. S., 2004, 'Role of Brownian Motion in the Enhanced Thermal Conductivity of Nanofluids,' Appl. Phys. Lett., Vol. 84, pp.4316-4318   DOI   ScienceOn
8 Eastman, J. A., Choi, S. U. S, Yu, W. and Thompson, L. J., 2001, 'Anomalously Increased Effective Thermal Conductivity of Ethylene Glycol-based Nanofluids Containing Copper Nanoparticles,' Appl. Phys. Lett., Vol. 78, pp. 718-720   DOI   ScienceOn
9 Whitmore, P. J. and Meisen, A., 1977, 'Estimation of Thermo- and Diffusiophoretic Particle Deposition,' The Canadian Journal of Chemical Engineering, Vol. 55, pp. 279-285   DOI   ScienceOn
10 Bott, T. R., 1995, 'Fouling of Heat Exchangers,' Elsevier
11 Lee, S., Choi, S. U. S. and Eastman, J. A., 1999, 'Measuring Thermal Conductivity of Fluids Containing Oxide Nanoparticles,' ASME J. Heat Transfer, Vol. 121, pp. 280-289   DOI
12 Das, S. K., Putra, N. and Roetzel, W., 2003, 'Pool Boiling Characteristics of Nano-fluids,' Int. J. Heat Mass Transfer, Vol. 46, pp. 851-861   DOI   ScienceOn
13 Schlichting, H., 1979, 'Boundary Layer Theory,' 7th Ed., McGraw-Hill Part B
14 Xuan, Y. and Roetzel, w., 2000, 'Conceptions for Heat Transfer Correlation of Nanofluids,' Int. Journal of Heat and Mass Transfer, Vol. 43, pp. 3701-3707   DOI   ScienceOn
15 Jang, S. P., 2004, 'Thermal Conductivities of Nanofluids,' Trans. of the KSME (B), Vol. 28, pp. 968-975   과학기술학회마을   DOI
16 Davalos Orozco L. A. and del Castillo L. E, 2002, 'Hydrodynamic Behavior of Suspensions of Polar Particles,' Encyclopedia of Surface and Colloid Science, Vol. 4, Marcel Dekker, New York, pp. 2375-2396
17 Abernethy, R. B. and Benedict, R. P., 1985, 'ASME Measurement Uncertainty,' ASME Journal of Fluids Engineering, Vol. 107, pp. 161-164   DOI
18 Blevins, R. D., 1984, 'Applied Fluid Dynamics Handbook,' Van Nostrand Reinhold