DOI QR코드

DOI QR Code

Fluid Flow Characteristics of Al2O3 Nanoparticles Suspended in Water

알루미나 나노유체의 유동 특성에 관한 연구

  • 장석필 (한국항공대학교 항공우주 및 기계공학과) ;
  • 이지환 (한국항공대학교 항공우주 및 기계공학과)
  • Published : 2006.06.01

Abstract

In this paper we report fluid flow characteristics of $Al_2O_3$ nanoparicles suspended in water. Especially, the effects of volume fraction with the range of 0.01% to 0.3% and tube diameter with $310{\mu}m$ to 1.735mm on the pressure drop and the effective viscosity of $Al_2O_3$ nanoparicles suspended in water are experimentally investigated. It is shown that the effective viscosity of water-based $Al_2O_3$ nanofluids with 0.1 Vol.% through a circular tube of 1.024mm diameter is increased to about 6%. The effective viscosity from experimental results is compared with that from Einstein model. With the comparison, we show that Einstein model for determining the effective viscosity of nanofluids is not applicable to water-based $Al_2O_3$ nanofluids.

Keywords

References

  1. Lee, S., Choi, S. U. S. and Eastman, J. A., 1999, 'Measuring Thermal Conductivity of Fluids Containing Oxide Nanoparticles,' ASME J. Heat Transfer, Vol. 121, pp. 280-289 https://doi.org/10.1115/1.2825978
  2. Jang, S. P., 2004, 'Thermal Conductivities of Nanofluids,' Trans. of the KSME (B), Vol. 28, pp. 968-975 https://doi.org/10.3795/KSME-B.2004.28.8.968
  3. Eastman, J. A., Choi, S. U. S, Yu, W. and Thompson, L. J., 2001, 'Anomalously Increased Effective Thermal Conductivity of Ethylene Glycol-based Nanofluids Containing Copper Nanoparticles,' Appl. Phys. Lett., Vol. 78, pp. 718-720 https://doi.org/10.1063/1.1341218
  4. Choi, S. U. S., Zhang, Z. G, Yu, w., Lockwood, F. E. and Grulke, E. A., 2001, 'Anomalous Thermal Conductivity Enhancement in Nanotube Suspensions,' Appl. Phys. Lett., Vol. 79, pp. 2252-2254 https://doi.org/10.1063/1.1408272
  5. Das, S. K., Putra, N., Thiesem, P. and Roetzel, W., 2003, 'Thermal Conductivities of Naked and Monolayer Protected Metal Nanoparticle Base Nanofluids: Manifestation of Anomalous Enhancement and Chemical Effects,' Appl. Phys. Lett., Vol. 83, pp. 2931-2933 https://doi.org/10.1063/1.1602578
  6. Jang, S. P. and Choi, S. U. S., 2004, 'Role of Brownian Motion in the Enhanced Thermal Conductivity of Nanofluids,' Appl. Phys. Lett., Vol. 84, pp.4316-4318 https://doi.org/10.1063/1.1756684
  7. Putra, N., Roetzel, W. and Das, S. K. 2003, 'Natural Convection of Nano-fluids,' Heat and Mass Transfer, Vol. 39, pp. 775-784 https://doi.org/10.1007/s00231-002-0382-z
  8. Pak, B. C. and Cho, Y. I., 1998, 'Hydrodynamic and Heat Transfer Study of Dispersed Fluids with Sub micron Metallic Oxide Particle,' Experimental Heat Transfer, Vol. 11, pp. 151-170 https://doi.org/10.1080/08916159808946559
  9. Wang, X., Xu, X. and Choi, S. U. S., 1999, 'Thermal Conductivity of Nanoparticle-fluid Mixture,' J. Thermophysics and Heat Transfer, Vol. 13, pp. 474-480 https://doi.org/10.2514/2.6486
  10. Einstein, A., 1956, 'Investigation on the Theory of Brownian Movement,' Dover, New York
  11. Das, S. K., Putra, N. and Roetzel, W., 2003, 'Pool Boiling Characteristics of Nano-fluids,' Int. J. Heat Mass Transfer, Vol. 46, pp. 851-861 https://doi.org/10.1016/S0017-9310(02)00348-4
  12. Blevins, R. D., 1984, 'Applied Fluid Dynamics Handbook,' Van Nostrand Reinhold
  13. Abernethy, R. B. and Benedict, R. P., 1985, 'ASME Measurement Uncertainty,' ASME Journal of Fluids Engineering, Vol. 107, pp. 161-164 https://doi.org/10.1115/1.3242450
  14. Davalos Orozco L. A. and del Castillo L. E, 2002, 'Hydrodynamic Behavior of Suspensions of Polar Particles,' Encyclopedia of Surface and Colloid Science, Vol. 4, Marcel Dekker, New York, pp. 2375-2396
  15. Schlichting, H., 1979, 'Boundary Layer Theory,' 7th Ed., McGraw-Hill Part B
  16. Xuan, Y. and Roetzel, w., 2000, 'Conceptions for Heat Transfer Correlation of Nanofluids,' Int. Journal of Heat and Mass Transfer, Vol. 43, pp. 3701-3707 https://doi.org/10.1016/S0017-9310(99)00369-5
  17. Bott, T. R., 1995, 'Fouling of Heat Exchangers,' Elsevier
  18. Whitmore, P. J. and Meisen, A., 1977, 'Estimation of Thermo- and Diffusiophoretic Particle Deposition,' The Canadian Journal of Chemical Engineering, Vol. 55, pp. 279-285 https://doi.org/10.1002/cjce.5450550307