• Title/Summary/Keyword: $AlF_3$

Search Result 1,166, Processing Time 0.038 seconds

The Comparison of Optical Properties with Different Optical Thickness of Materials by EMP-simulation (물질의 광학적 두께에 따른 EMP-simulation을 통한 광특성 대조)

  • Jang, Kang-Jae;Jang, Gun-Ik;Lee, Nam-Il;Jung, Jae-Il;Lim, Kwang-Su
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.11a
    • /
    • pp.345-345
    • /
    • 2007
  • ZnS/$Na_3AlF_6$/ZnS/Cu multi-layered thin film were simulated by EMP. EMP is a comprehensive software package for the design and analysis of optical thin film. ZnS and $Na_3AlF_6$ was selected as a high refractive index material and low refractive index material And Cu was selected as mid reflective material. Optical properties including color effect were systematically studied in terms of different low refractive index materials thickness. $Na_3AlF_6$ were changed 0.25, 0.5, 0.75, $1.0{\lambda}$. The thin film showed $0.25{\lambda}$ : blue, purple / $0.5{\lambda}$ : yellow $0.75{\lambda}$ : blue, purple, red / $1.0{\lambda}$ : yellow, green, blue, purple. It was becaused by different optical thickness of $Na_3AlF_6$. The maximum of optical interference by refractive layer.

  • PDF

Effects of PEDOT:PSS Buffer Layer in a Device Structure of ITO/PEDOT:PSS/TPD/Alq3/Cathode

  • Ahn, Joon-Ho;Lee, Joon-Ung
    • Transactions on Electrical and Electronic Materials
    • /
    • v.6 no.1
    • /
    • pp.25-28
    • /
    • 2005
  • We have investigated the effects of hole-injection buffer layer in organic light-emitting diodes using poly(3,4-ethylenedioxythiophene):poly(stylenesulfonate)(PEDOT:PSS) in a device structure of $ITO/PEDOT:PSS/TPD/Alq_{3}/cathode$. Polymer PEDOT:PSS buffer layer was made by spin casting method. Current-voltage, luminance-voltage characteristics and efficiency of device were measured at room temperature with a variation of cathode materials; Al, LiF/Al, LiAl, and Ca/Al. The device with LiF/Al cathode shows an improvement of external quantum efficiency approximately by a factor of ten compared to that of Al cathode only device. Our observation shows that cathode is important in improving the efficiency of the organic light-emitting diodes.

Electrical and Optical Characteristics in Organic Electroluminescent Devices with Different Materials for Electron Injection

  • Cho, Min-Jeong;Park, wan-Ji;Lim, Min-Su;Cheol-Hyun park;Jeon-Gu lee;Lim, Kee-Joe;Park, Soo-Gil;Kim, Hyun-Hoo
    • KIEE International Transactions on Electrophysics and Applications
    • /
    • v.11C no.2
    • /
    • pp.37-41
    • /
    • 2001
  • In this study, organic electroluminescent devices with the ITO/TPD/Alq$_3$/cathode structure, using various materials of Al, Mg:Ag, Al:Li, MgF$_2$/Al, and LiF/Al as cathodes, were fabricated. We investigated the electrical and optical properties of the devices as follow: current density-voltage(J-V), luminance-voltage(L-V) and luminous efficiency-voltage curves. The bilayer cathodes with LiF/Al and MgF$_2$/Al exhibited better device performance than the other cathodes. It is considered that the improved performance of the organic electroluminescent devices is attributable to the lowering of driving voltage caused by the enhanced electron injection. The alkaline-earth fluorides are desirable materials to improve the performance of the EL devices with the Al cathode, and high luminous efficiency was achieved.

Studies on Fabrication and Characteristics of $Al_{0.3}Ga_0.7N/GaN$ Heterojunction Field Effect Transistors for High-Voltage and High-Power Applications (고전압과 고전력 응용을 위한 $Al_{0.3}Ga_0.7N/GaN$ 이종접합 전계효과 트랜지스터의 제작 및 특성에 관한 연구)

  • Kim, Jong-Wook;Lee, Jae-Seung;Kim, Chang-Suk;Jeong, Doo-Chan;Lee, Jae-Hak;Shin, Jin-Ho
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.38 no.8
    • /
    • pp.13-19
    • /
    • 2001
  • We report on the fabrication and characterization of $Al_{0.3}Ga_{0.7}N$ HFETs with different barrier layer thickness which were grown using plasma-assisted molecular beam epitaxy (PAMBE). The barrier thickness of $Al_{0.3}Ga_{0.7}N$/GaN HFETs could be optimized in order to maximize 2 dimensional electron gas induced by piezoelectric effect without the relaxation of $Al_{0.3}Ga_{0.7}N$ layer. $Al_{0.3}Ga_{0.7}N$/GaN (20 nm/2 mm) HFET with 0.6 ${\mu}m$-long and 34 ${\mu}m$-wide gate shows saturated current density ($V_{gs}=1\;V$) of 1.155 A/mm and transconductance of 250 ms/mm, respectively. From high frequency measurement, the fabricated $Al_{0.3}Ga_{0.7}N$/GaN HFETs showed $F_t=13$ GHz and $F_{max}=48$ GHz, respectively. The uniformity of less than 5% could be obtained over the 2 inch wafer. In addition to the optimization of epi-layer structure, the relation between breakdown voltage and high frequency characteristics has been examined.

  • PDF

Conversion of Cellulose over Ni Loaded Mesoporous MSU-F Catalysts via Air Gasification

  • Park, Young-Kwon;Park, Kyung Sun;Kim, Seong-Soo;Park, Sung Hoon;Jung, Sang-Chul;Kim, Sang Chai;Jeon, Jong-Ki;Jeon, Ki-Joon
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.11
    • /
    • pp.3205-3208
    • /
    • 2014
  • Catalytic gasification of cellulose was carried out in a U-type fixed reactor with Ni loaded MSU-F catalyst (Ni/MSU-F) and Ni loaded ${\gamma}-Al_2O_3$ (Ni/${\gamma}-Al_2O_3$). The characteristics of the catalysts were analyzed by using X-ray diffraction, $H_2$-temperature programmed reduction, and Brunauer-Emmett-Teller analyses. The operation conditions of catalytic gasification reactions were $750^{\circ}$ and 0.2 equivalence ratio. Air was used as gasification agent. Catalytic gasification characteristics, such as gas yield and gas composition ($H_2$, CO, $CO_2$, $C_1-C_4$), were measured and calculated. The gas yield of Ni/MSU-F was much higher than that of Ni/${\gamma}-Al_2O_3$. Especially high amount of hydrogen was produced by Ni/MSU-F.

Some Properties Subclasses of Analytic Functions

  • Frasin, Basem Aref
    • Kyungpook Mathematical Journal
    • /
    • v.54 no.4
    • /
    • pp.531-543
    • /
    • 2014
  • The object of the present paper is to discuss some interesting properties of analytic functions f(z) associated with the subclasses $\mathcal{D}({\beta}_1,{\beta}_2,{\beta}_3;{\lambda})$, $\mathcal{G}({\theta},{\alpha})$ and $\mathcal{Q}({\theta},{\alpha})$. Also, radius problems of $\frac{1}{\delta}f({\delta}z)$ for f(z) in the class $\mathcal{D}({\beta}_1,{\beta}_2,{\beta}_3;{\lambda})$, $\mathcal{G}({\theta},{\alpha})$ and $\mathcal{Q}({\theta},{\alpha})$ are considered.

A study on the sintering and Dielectric Characteristics of Low Temperature Sinterable $SiO_2-TiO_2-Bi_2O_3-RO$ System (RO:BaO-CaO-SrO) Glass/Ceramic Dielectrics as a Function of $AI_2O_3$ Content (저온 소성용 $SiO_2-TiO_2-Bi_2O_3-RO$계 (RO;BaO-CaO-SrO) Glass/Ceramic 유전체의 $AI_2O_3$ 함량에 따른 소결 및 유전 특성의 변화)

  • Yun, Jang-Seok;Lee, In-Gyu;Lim, Uk;Cho, Hyun-Min;Park, Chong-Chol
    • Journal of the Korean Ceramic Society
    • /
    • v.36 no.12
    • /
    • pp.1350-1355
    • /
    • 1999
  • Sintering characteristics and dielectric properties of low temperature sinterable Glass/Ceramic dielectric materials were investigated. The dielectric materials which were developed for microwave frequency applications consist of SiO2-TiO2-Bi2O3-RO system(RO:BaO-CaO-SrO) crystallizable glass and Al2O3 as a ceramic filler. Sintering experiments showed that no more densification occurred above 80$0^{\circ}C$ and bulk density and shrinkage depended on Al2O3 content only. Results of dielectric measurements showed that $\varepsilon$r Q$\times$f and $\tau$f of the material containing 30wt% Al2O3 were 17.3, 600 and +23 ppm respectively. Those values for 45 and 60wt% Al2O3 samples were 11.6, 1400, +0.7 ppm and 7.2, 2000, -8.5 ppm, repectively. The results clearly showed that the Glas/Ceramic materials of present experiment decreased in $\varepsilon$r and increased in $\times$f value and changed from positive to negative value in $\tau$f value with the increasement of Al2O3 content.

  • PDF

Development of the Delamination Evaluation Parameters (I) -The Delamination Aspect Ratio and the Delamination Shape Factors-

  • Song, Sam-Hong;Oh, Dong-Joon
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.11
    • /
    • pp.1932-1940
    • /
    • 2004
  • Although the previous researches evaluated the fatigue behavior of Al/GFRP laminates using the traditional fracture mechanism, their researches were not sufficient to do it : the damage zone of Al/GFRP laminates was occurred at the delamination zone instead of the crack-metallic damages. Thus, previous researches were not applicable to the fatigue behavior of Al/GFRP laminates. The major purpose of this study was to evaluate delamination behavior using the relationship between crack length (a) and delamination width (b) in Al/GFRP laminate. The details of investigation were as follows: 1) Relationship between the crack length (a) and the delamination width (b), 2) Relationship between the delamination aspect ratio (b/a) and the delamination area rate ((A$\_$D/)/subN// (A$\_$D/)$\_$All/), 3) The effect of delamination aspect ratio (b/a) on the delamination shape factor (f$\_$s/) and the delamination growth rate (dA$\_$D// da). As results, it was known that the delamination aspect ratio (b/a) was decreased and the delamination area rate ((A$\_$D/)$\_$N// (A$\_$D/)$\_$All/) was increased as the normalized crack size (a/W) was increased. And, the delamination shape factors (f$\_$s/) of the ellipse-II(f$\_$s3/) was greater than of the ellipse-I(f$\_$s2/) but that of the triangle (f$\_$s1/) was less than of the ellipse-I(f$\_$s2/).

A Study on Cast Structure and Mechanical Properties of Al-10% Mg Alloy Solidified Under High Hydraulic Pressure (고압주조한 Al-10% Mg 합금의 주조조직 및 기계적 성질에 관한 연구)

  • Jeong, Woo-Hyon;Jeong, Jong-Yeon;Lee, Jong-Nam
    • Journal of Korea Foundry Society
    • /
    • v.3 no.1
    • /
    • pp.28-36
    • /
    • 1983
  • In order to study the cast structure and mechanical properties of Al-10 % Mg alloy solidified under the various high hydraulic pressure, ranging from $0kgf/cm^2$ to $2000㎏f/cm^2$ , the relationship between the cooling rate and the cast structure was observed, and also the mechanical test and the measurement of the specific gravity were carried out. From this experiment, results were summerized as follows; 1. The cooling rate of the alloy increased with increase of the applied pressure. 2. The formation of the piping and the porosity in the castings was surpressed by applying the high hydraulic pressure. 3. The dendrite arm spacing decreased with increase of the applied pressure. 4. Mechanical properties and specific gravity increased with the increase of the applied pressure.

  • PDF

Dependance on Metal Electrode of Poly(3-hexylthiophene) EL Device (Poly(3-hexylthiophene) 발광소자의 금속전극 의존성)

  • 서부완;김주승;김형곤;이경섭;구할본
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.11a
    • /
    • pp.162-165
    • /
    • 2000
  • To investigate the effect of metal electrode in electroluminescent[EL] devices, we fabricated EL devices of ITO/P3HT/Al, ITO/P3HT/LiF/Al and ITO/P3HT/Mg:In structure. In current-voltage-light power characteristics, turn-on voltage of EL devices using LiF insulating layer and Mg:In(2.8V) metal electrode is lower than EL device using Al(4.2V). Besides the external quantum efficiency is improved also. The reason is related to carrier mobility and carrier injection, which would affect the hole-electron balance. In the device with Al electrode, holes injected from indium-tin-oxide[ITO] to poly(3-hexylthiophene)[P3HT] might reach the Al electrode without interacting with injected electrons, because the electron injection efficiency was very low for this electrode. Besides oxidation of the Al electrode is likely due to holes reaching the cathode without meeting injected electrons. Another possible reason for the higher EL efficiency may be the insulating layer playing the role of a tunneling barrier for holes to the Al electrode. In all EL devices, the orange-red light was clearly visible in a dark room. Maximum peak wavelength of EL spectrum emitted at 640nm in accordance with photon energy 1.9eV

  • PDF