DOI QR코드

DOI QR Code

Conversion of Cellulose over Ni Loaded Mesoporous MSU-F Catalysts via Air Gasification

  • Park, Young-Kwon (Graduate School of Energy and Environmental System Engineering, University of Seoul) ;
  • Park, Kyung Sun (Graduate School of Energy and Environmental System Engineering, University of Seoul) ;
  • Kim, Seong-Soo (Korea Institute of Energy Research) ;
  • Park, Sung Hoon (Department of Environmental Engineering, Sunchon National University) ;
  • Jung, Sang-Chul (Department of Environmental Engineering, Sunchon National University) ;
  • Kim, Sang Chai (Department of Environmental Education, Mokpo National University) ;
  • Jeon, Jong-Ki (Department of Chemical Engineering, Kongju National University) ;
  • Jeon, Ki-Joon (Department of Environmental Engineering, Inha University)
  • Received : 2014.05.06
  • Accepted : 2014.07.04
  • Published : 2014.11.20

Abstract

Catalytic gasification of cellulose was carried out in a U-type fixed reactor with Ni loaded MSU-F catalyst (Ni/MSU-F) and Ni loaded ${\gamma}-Al_2O_3$ (Ni/${\gamma}-Al_2O_3$). The characteristics of the catalysts were analyzed by using X-ray diffraction, $H_2$-temperature programmed reduction, and Brunauer-Emmett-Teller analyses. The operation conditions of catalytic gasification reactions were $750^{\circ}$ and 0.2 equivalence ratio. Air was used as gasification agent. Catalytic gasification characteristics, such as gas yield and gas composition ($H_2$, CO, $CO_2$, $C_1-C_4$), were measured and calculated. The gas yield of Ni/MSU-F was much higher than that of Ni/${\gamma}-Al_2O_3$. Especially high amount of hydrogen was produced by Ni/MSU-F.

Keywords

References

  1. Zhou, C. H.; Xia, X.; Lin, C. X.; Tong, D. S.; Beltramini, J. Chem. Soc. Rev. 2011, 17, 549.
  2. Pidtasang, B.; Udomsap, P.; Sukkasi, S.; Chollacoop, N.; Pattiya, A. J. Ind. Eng. Chem. 2013, 19, 1851. https://doi.org/10.1016/j.jiec.2013.02.031
  3. Bulushev, D. A.; Ross, J. R. H. Catal. Today 2011, 171, 1. https://doi.org/10.1016/j.cattod.2011.02.005
  4. Lee, H. J.; Lim, W. S.; Lee, J. W. J. Ind. Eng. Chem. 2013, 19, 2010. https://doi.org/10.1016/j.jiec.2013.03.014
  5. Ko, C. H.; Park, S. H.; Jeon, J. K.; Suh, D. J.; Jeong, K. E.; Park, Y. K. Korean J. Chem. Eng. 2012, 29, 1657. https://doi.org/10.1007/s11814-012-0199-5
  6. Lasa, D.; Salaices, E.; Mazumder, J.; Lucky, R. Chem. Rev. 2011, 111, 5404. https://doi.org/10.1021/cr200024w
  7. Xu, C.; Donald, J.; Byambajav, E.; Ohtsuka, Y. Fuel 2010, 89, 1784. https://doi.org/10.1016/j.fuel.2010.02.014
  8. Palma, C. F. Appl. Energy 2013, 111, 129. https://doi.org/10.1016/j.apenergy.2013.04.082
  9. Shen, Y.; Yoshikawa, K. Renew. Sustain. Energy Rev. 2013, 21, 371. https://doi.org/10.1016/j.rser.2012.12.062
  10. Li, F; Huagn, J.; Fang, Y.; Wang, Y. Korean J. Chem. Eng. 2013, 30, 2013.
  11. Kim, Y. K.; Park, J. I.; Jung, D.; Miyawaki, J.; Yoon, S. H.; Mochida, I. J. Ind. Eng. Chem. 2014, 20, 9. https://doi.org/10.1016/j.jiec.2013.04.003
  12. Park, I. H.; Park, Y. K.; Lee, Y. M.; Bae, W.; Kwak, Y. H.; Cheon, K. H.; Park, S. H. Appl. Chem. Eng. 2011, 22, 286.
  13. Park, H. J.; Park, S. H.; Sohn, J. M.; Park, J.; Jeon, J. K.; Kim, S. S.; Park, Y. K. Bioresour. Technol. 2010, 101, S101. https://doi.org/10.1016/j.biortech.2009.03.036
  14. Xue, Q.; Liu, Y. J. Ind. Eng. Chem. 2012, 18, 1741. https://doi.org/10.1016/j.jiec.2012.03.018
  15. Nacken, M.; Heidenreigh, S.; Verpoort, F.; Baron, G. V. Appl. Catal. B: Environ. 2012, 125, 111. https://doi.org/10.1016/j.apcatb.2012.05.027
  16. Kim, S. S.; Kim, J. W.; Park, S. H.; Jung, S. H.; Jeon, J. K.; Ryu, C.; Park, Y. K. Bull. Korean Chem. Soc. 2013, 34, 3387. https://doi.org/10.5012/bkcs.2013.34.11.3387
  17. Jeon, M. J.; Jeon, J. K.; Suh, D. J.; Park, S. H.; Sa, Y. J.; Joo, S. H.; Park, Y. K. Catal. Today 2013, 204, 170. https://doi.org/10.1016/j.cattod.2012.07.039
  18. Lee, H. W.; Park, S. H.; Jeon, J. K.; Ryoo, R.; Kim, W.; Suh, D. J.; Park, Y. K. Catal. Today 2014, 232, 119. https://doi.org/10.1016/j.cattod.2013.12.015
  19. Kim, T. H.; Jeon, Y. J.; Oh, K. K.; Kim, T. H. Korean J. Chem. Eng. 2013, 30, 1339. https://doi.org/10.1007/s11814-013-0068-x
  20. Park, Y. K.; Jun, B. R.; Park, S. H.; Jeon, J. K.; Lee, S. H.; Kim, S. S.; Jeong, K. E. J. Nanosci. Nanotechnol. 2014, 14, 5120. https://doi.org/10.1166/jnn.2014.8406
  21. Jun, B. R.; Jeong, K. E.; Joo, S. H.; Sa, Y. J.; Park, S. H.; Jeon, J. K.; Park, Y. K. J. Nanosci. Nanotechnol. 2013, 13, 7794. https://doi.org/10.1166/jnn.2013.8125
  22. Cho, Y. S.; Park, J. C.; Lee, B.; Kim, Y. H.; Yi, J. Catal. Lett. 2002, 81, 89. https://doi.org/10.1023/A:1016068324731
  23. Yang, Y.; Ochoa-Hernandez, C.; de la Pena O'Shea, V. A.; Pizarro, P.; Coronado, J. M.; Serrano, D. P. Appl. Catal. B: Environ. 2014, 145, 91. https://doi.org/10.1016/j.apcatb.2013.03.038
  24. Wu, C.; Wang, L.; Williams, P. T.; Shi, J.; Huang, J. Appl. Catal. B: Environ. 2011, 108-109, 6. https://doi.org/10.1016/j.apcatb.2011.07.023
  25. Wang, Y.; Zhu, A.; Zhang, Y.; Au, C. T.; Yang, X.; Shi, C. Appl. Catal. B: Environ. 2008, 81, 141. https://doi.org/10.1016/j.apcatb.2007.12.005
  26. Li, G.; Hu, L.; Hill, J. M. Appl. Catal. A: Gen. 2006, 301, 16. https://doi.org/10.1016/j.apcata.2005.11.013
  27. Li, J.; Liu, J.; Liao, S.; Yan, R. Int. J. Hydrogen Energy 2010, 35, 739.