• Title/Summary/Keyword: $A_{2}O$ process

Search Result 6,045, Processing Time 0.049 seconds

Photocatalytic Properties of TiO2 Nanopowder Synthesized by Chemical Vapor Condensation Process (화학기상응축 공정으로 제조한 TiO2 나노분말의 광촉매 특성)

  • 임성순;남희영;윤성희;이창우;유지훈;이재성
    • Journal of Powder Materials
    • /
    • v.10 no.2
    • /
    • pp.123-128
    • /
    • 2003
  • $TiO_2$ nanopowder was synthesized by chemical vapor condensation (CVC) process and its photocatalytic property depending on microstructure was considered in terns of decomposition rate of organic compound. In order to control microstructure of $TiO_2$ nanopowder such as particle size and degree of agglomeration, precursor flow rate representing number concentration was changed as a process variable. In TEM observation, spherical $TiO_2$ nanoparticles with average size of 20 nm showed gradual increases in particle size and degree of agglomeration with increase of precursor flow rate. Also decomposition rate of organic compound increased with decreasing precursor flow rate. Thus, it was concluded that photocatalytic property was enhanced by targe surface area of disperse $TiO_2$ nanoparticles synthesized at lower precursor flow rate condition in CVC process.

A study on reduction of excess sludge in activated sludge system from a petrochemical plant using electro fenton process (전기펜톤공정을 이용한 석유화학공장 폐활성슬러지의 감량화 가능성 평가)

  • Chung, Chong Min;Kim, Kyung Il;Shim, Natalia;Park, Chul Hee;Lee, Sang Hyup
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.23 no.5
    • /
    • pp.669-678
    • /
    • 2009
  • The reduction of excess activated sludge from petrochemical plant was investigated by the electro fenton (E-Fenton) process using electrogenerated hydroxyl radicals which lead to mineralization of activated sludge to $CO_2$, water and inorganic ions. Factors affecting the disintegration efficiency of excess activated sludge in E-Fenton process were examined in terms of five criteria: pH, $H_2O_2/Fe^{2+}$ molar ratio, current density, initial MLSS (mixed liquid suspended solids) concentration, $H_2O_2$ feeding mode. TSS total suspended solid and $TCOD_{cr}$ reduction rate increased with the increasing $H_2O_2/Fe^{2+}$ molar ratio and current density until 42 and $6.7 mA/cm^2$, respectively but further increase of $H_2O_2/Fe^{2+}$ molar ratio and current density would reduce the reduction rate. On the other hand, as expected, increasing pH and initial MLSS concentration of activated sludge decreas TSS and $TCOD_{cr}$ reduction rate. The E-Fenton process was gradually increased during first 30 minutes and then linearly proceed till 120 minutes. The optimal E-Fenton condition showed TSS reduction rate of 62~63% and $TCOD_{cr}$ (total chemical oxygen demand) reduction rate of 55~56%. Molar ratio $H_2O_2/Fe^{2+} = 42$ was determined as optimal E-Fenton condition with initial $Fe^{2+}$ dose of 5.4 mM and current density of $6.7{\sim}13.3 mA/cm^2$, initial MLSS of 7,600 mg/L and pH 2 were chosen as the most efficient E-Fenton condition.

Synthesis and Characterization of SnO2 Thin Films Deposited by Plasma Enhanced Atomic Layer Deposition Using SnCl4 Precursor and Oxygen Plasma

  • Lee, Dong-Gwon;Kim, Da-Yeong;Gwon, Se-Hun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.254-254
    • /
    • 2016
  • Tin dioxide (SnO2) thin film is one of the most important n-type semiconducting materials having a high transparency and chemical stability. Due to their favorable properties, it has been widely used as a base materials in the transparent conducting substrates, gas sensors, and other various electronic applications. Up to now, SnO2 thin film has been extensively studied by a various deposition techniques such as RF magnetron sputtering, sol-gel process, a solution process, pulsed laser deposition (PLD), chemical vapor deposition (CVD), and atomic layer deposition (ALD) [1-6]. Among them, ALD or plasma-enhanced ALD (PEALD) has recently been focused in diverse applications due to its inherent capability for nanotechnologies. SnO2 thin films can be prepared by ALD or PEALD using halide precursors or using various metal-organic (MO) precursors. In the literature, there are many reports on the ALD and PEALD processes for depositing SnO2 thin films using MO precursors [7-8]. However, only ALD-SnO2 processes has been reported for halide precursors and PEALD-SnO2 process has not been reported yet. Herein, therefore, we report the first PEALD process of SnO2 thin films using SnCl4 and oxygen plasma. In this work, the growth kinetics of PEALD-SnO2 as well as their physical and chemical properties were systemically investigated. Moreover, some promising applications of this process will be shown at the end of presentation.

  • PDF

Effect of Calcination Temperature on Al2O3-ZrO2 Ceramic Prepared by Sol-Gel Process (졸-겔법을 이용하여 제조한 Al2O3-ZrO2 세라믹스에 미치는 하소온도의 영향)

  • 우상국;김종희
    • Journal of the Korean Ceramic Society
    • /
    • v.24 no.5
    • /
    • pp.423-430
    • /
    • 1987
  • Characteristics of Al2O3-ZrO2 powders prepared by sol-gel process and their sintering behavior were investigated as a function of calcination temperature. The sol-gel processed powders were calcined at 800, 900, 1000, 1100, 1200$^{\circ}C$, and analyzed by X-ray diffraction technique. Pore size and distribution of green compact of the calcined powders were measured by mercury porosimeter. It is suggested that the optimal temperature of calcination for the sintering of Al2O3-ZrO2 powder prepared by sol-gel process is 1100$^{\circ}C$. In the Al2O3-17vol.% ZrO2 sintered specimen, which was sintered at 1600$^{\circ}C$ for 2hrs in air, 69vol.% tetragonal phse existed.

  • PDF

Theoretical Calculation and Experimental Verification of the Hf/Al Concentration Ratio in Nano-mixed $Hf_xAl_yO_z$ Films Prepared by Atomic Layer Deposition

  • Kil, Deok-Sin;Yeom, Seung-Jin;Hong, Kwon;Roh, Jae-Sung;Sohn, Hyun-Cheol;Kim, Jin-Woong;Park, Sung-Wook
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.5 no.2
    • /
    • pp.120-126
    • /
    • 2005
  • We have proposed a characteristic method to estimate real composition when multi component oxide films are deposited by ALD. Final atomic concentration ratio was theoretically calculated from the film densities and growth rates for $HfO_2$ and $Al_2O_3$ using ALD processed HfxAhOz mms.W e have transformed initial source feeding ratio during deposition to fins] atomic ratio in $Hf_xAl_yO_z$ films through thickness factors ($R_{HFO_2}$ ami $R_{Al_2O_3}$) ami concentration factor(C) defined in our experiments. Initial source feeding ratio could be transformed into the thickness ratio by each thickness factor. Final atomic ratio was calculated from thickness ratio by concentration factor. It has been successfully confirmed that the predicted atomic ratio was in good agreement with the actual measured value by ICP-MS analysis.

Synthesis and Dispersion of Ceria(CeO2) Nanoparticles by Solvothermal Process (용매열 공정을 이용한 세리아(CeO2) 나노분말의 합성 및 분산거동)

  • Lim, Tae Seop;Ock, Ji Young;Choi, Yeon Bin;Kim, Bong Gu;Son, Jeong Hun;Jung, Yeon Gil
    • Korean Journal of Materials Research
    • /
    • v.30 no.7
    • /
    • pp.376-382
    • /
    • 2020
  • CeO2 nanoparticles, employed in a lot of fields due to their excellent oxidation and reduction properties, are synthesized through a solvothermal process, and a high specific surface area is shown by controlling, among various process parameters in the solvothermal process, the type of solvent. The synthesized CeO2 nanoparticles are about 11~13 nm in the crystallite size and their specific surface area is about 65.38~84.65 ㎡/g, depending on the amount of ethanol contained in the solvent for the solvothermal process; all synthesized CeO2 nanoparticles shows a fluorite structure. The dispersibility and microstructure of the synthesized CeO2 nanoparticles are investigated according to the species of dispersant and the pH value of the solution; an improvement in dispersibility is shown with the addition of dispersants and control of the pH. Various dispersing properties appear according to the dispersant species and pH in the solution with the synthesized CeO2 nanoparticles, indicating that improved dispersing properties in the synthesized CeO2 nanoparticles can be secured by applying dispersant and pH control simultaneously.

Organic Removal Efficiency and Toxicity Evaluation of Persistent Microorganism from Dye Wastewater Treatment using a Photooxidation system (광산화시스템을 이용한 염색폐수의 유기물 처리효율 및 잔류미생물의 독성 평가)

  • Jung, Ho Jun;Rhee, Dong Seok
    • Journal of Industrial Technology
    • /
    • v.29 no.A
    • /
    • pp.83-88
    • /
    • 2009
  • The removal efficiency of organic compounds and the toxicity evaluation of microorganism have been studied in dye wastewater treatment using $UV/TiO_2$ and $UV/H_2O_2$ photooxidation system. Sample waters tested in this work were raw dye wastewater and dye wastewater treated in $UV/TiO_2$ and $UV/H_2O_2$ photooxidation system respectively. Total organic carbon(TOC) removal rate was 50% in $UV/TiO_2$ process and 80% in $UV/H_2O_2$ process. It has been investigated with colony counting agar method and paper disk method whether the type of treatment process has affected the microorganism growth. In the raw wastewater, more than four types of microorganisms have survived. But, little of microorganisms were alive at TOC removal rate of 50% in $UV/TiO_2$ system. In contrast to that, two types of microorganisms were found at TOC removal rate of 80% in $UV/H_2O_2$ system.

  • PDF

Effect of Nitrite and Nitrate as the Source of OH Radical in the O3/UV Process with or without Benzene

  • Son, Hyun-Seok;Ahammad, A.J. Saleh;Rahman, Md. Mahbubur;Noh, Kwang-Mo;Lee, Jae-Joon
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.spc8
    • /
    • pp.3039-3044
    • /
    • 2011
  • This study suggests the prediction model for the concentration variation of $NO_2{^-}$ and $NO_3{^-}$ along with the rate constants of all reactions during ozonation under UV radiation ($O_3$/UV process). While $NO_2{^-}$ was completely converted into $NO_3{^-}$ during the $O_3$-only process, the production of $NO_2$ radical or $N_2O_4$ was expected in the $O_3$/UV process. In addition, the quenching of OH radicals, by $NO_2$ radical in the $O_3$/UV process, resulted in regeneration of $NO_2{^-}$. However, the regeneration of $NO_2{^-}$ was not observed in the $O_3$/UV process in the presence of $C_6H_6$ where the concentrations of $NO_2{^-}$ and $NO_3{^-}$ were significantly reduced compared to in the process without $C_6H_6$. The pseudo-first order rate constants of all species were calculated with and without the presence of $C_6H_6$ to predict the variation of concentrations of all species during the $O_3$/UV process. It was suggested that $NO_2{^-}$ and $NO_3{^-}$ in the $O_3$/UV process can be more effectively removed from an aqueous system with an OH radical scavenger such as $C_6H_6$.

Removal of Odorous Compounds Using Ozone and Hydrogen Peroxide (오존과 과산화수소를 이용한 이취미 물질 산화 제거)

  • Lee, Hwa-Ja;Son, Hee-Jong;Roh, Jae-Soon;Lee, Sang-Won;Ji, Ki-Won;Yu, Pyung-Jong;Kang, Lim-Seog
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.28 no.12
    • /
    • pp.1323-1330
    • /
    • 2006
  • In this study, five different odor causing compounds in the Nakdong river and rapid sand filtered waters were treated by oxidation from $O_3/H_2O_2$ process. In addition, the change in BDOC formation by the $O_3/H_2O_2$ process was also investigated for considering this advanced oxidation Process as a pre-treatment to the BAC treatment process. The experimental result showed that the removal efficiency of geosmin was higher with the use of 5 mg/L of $O_3$ and 0.2 mg/L of $H_2O_2$ than with the use of 20 mg/L of $O_3$ alone for the sand filtered water. And in general, the removal efficiency of geosmin in raw water was $12{\sim}27%$ lower than the one in sand filtered water. In sand filtered water. the removal efficiencies of geosmin and IPMP decreased when $H_2O_2/O_3$ ratio increases above the optimum ratio. The optimum ratio of $H_2O_2/O_3$ dose was $0.5{\sim}1.0$ for geosmin and $0.2{\sim}1.0$ for IPMP. However, the optimum ratio of $H_2O_2/O_3$ in raw water remove geosmin appealed to $1.0{\sim}3.0$. According to the experimental results for the removal of 5 different odor causing compounds under varied $O_3$ doses, the removal efficiency of IPMP was the highest with 60% and, in overall, $O_3/H_2O_2$ process showed higher removal efficiency than $O_3$ alone process. The BDOC formation by the $O_3/H_2O_2$ process increased from $0.1{\sim}0.25$ to $0.19{\sim}0.34$ comparing to $O_3$ process alone. Therefore, it is concluded that the advanced oxidation process with $O_3/H_2O_2$ can be used as a pretreatment to the BAC treatment process.

A Study on the N2O Separation Process from Crude N2O (Crude N2O로부터 정제된 N2O 분리공정에 관한 연구)

  • Cho, Jungho;Lee, Taekhong;Park, Jongki
    • Korean Chemical Engineering Research
    • /
    • v.43 no.4
    • /
    • pp.467-473
    • /
    • 2005
  • Liquid phase nitrous oxide ($N_2O$) contains air, carbon monoxide, water, carbon dioxide and NOx as main impurities. It is known to be very dangerous to obtain a very pure $N_2O$ product by using solidification at low temperature. In this study a new method to obtain a high purity of $N_2O$ product based on a continuous distillation process was introduced. For the modeling of the continuous distillation process to obtain a product having a purity over 99.999% of $N_2O$ stream, Intalox wire gauze packing- No. SCH-80S gauze packing column was used. Peng-Robinson equation of state was used for the modeling of the continuous distillation process and refrigeration system. Computational results performed in this work showed a good agreement with Aspen Plus simulation results.