• Title/Summary/Keyword: $2^k$ factorial design

Search Result 467, Processing Time 0.026 seconds

Application of the full factorial design to modelling of Al2O3/SiC particle reinforced al-matrix composites

  • Altinkok, Necat
    • Steel and Composite Structures
    • /
    • v.21 no.6
    • /
    • pp.1327-1345
    • /
    • 2016
  • $Al_2O_3$/SiC particulate reinforced (Metal Matrix Composites) MMCs which were produced by using stir casting process, bending strength and hardening behaviour were obtained using an analysis of variance (ANOVA) technique that uses full factorial design. Factor variables and their ranges were: particle size $2-60{\mu}m$; the stirring speed 450 rpm, 500 rpm and the stirring temperature $620^{\circ}C$, $650^{\circ}C$. An empirical equation was derived from test results to describe the relationship between the test parameters. This model for the tensile strength of the hybrid composite materials with $R^2$ adj = 80% for the bending strength $R^2$ adj = 89% were generated from the data. The regression coefficients of this model quantify the tensile strength and bending strengths of the effects of each of the factors. The interactions of all three factors do not present significant percentage contributions on the tensile strength and bending strengths of hybrid composite materials. Analysis of the residuals versus was predicted the tensile strength and bending strengths show a normalized distribution and thereby confirms the suitability of this model. Particle size was found to have the strongest influence on the tensile strength and bending strength.

Optimization of Process Variables for the Soda Pulping of Carpolobia Lutea (Polygalaceae) G. Don

  • Ogunsile, B.O.;Uba, F.I.
    • Journal of the Korean Chemical Society
    • /
    • v.56 no.2
    • /
    • pp.257-263
    • /
    • 2012
  • The selection of suitable delignification conditions and optimization of process variables is crucial to the successful operation of chemical pulping processes. Soda pulping of Carpolobia lutea was investigated, as an alternative raw material for pulp and paper production. The process was optimized under the influence of three operational variables, namely, temperature, time and concentration of cooking liquor. Equations derived using a second - order polynomial design predicted the pulp yield and lignin dissolution with errors less than 8% and 11% respectively. The maximum variations in the pulp yield using a second order factorial design was caused by changes in both time and alkali concentration. Optimum pulp yield of 43.87% was obtained at low values of the process variables. The selectivity of lignin dissolution was independent of the working conditions, allowing quantitative estimations to be established between the pulp yield and residual lignin content within the range studied.

Methodology to Simultaneously Optimize the Inlet Ozone Concentration to Oxidize NO and Relative Humidity Composition for the $NO_x$ Degradation using Soil Bio-filter

  • Cho, Ki-Chul;Hwang, Kyung-Chul
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.24 no.E2
    • /
    • pp.83-91
    • /
    • 2008
  • This work investigated the methodology to simultaneously optimize the ozone and relative humidity composition for the $NO_x$ degradation using soil biofilter. Experiments were made as a function of inlet ozone concentration ($0{\sim}1,770\;ppb$) and relative humidity ($38{\sim}81%$). Factorial design ($2^2+3$) and response surface methodology by central composite designs were used to examine the role of two factors and optimal response condition on $NO_x$ degradation. It was found that a second-order response surface model can properly interpret the experimental data with an $R^2$-value of 0.9730 and F-value of 71.83, based on which the maximum $NO_x$ degradation was predicted up to 92.8% within our experimental conditions.

A Numerical Study on the Performance Improvement of Guide Vanes in an Axial-flow Pump (축류펌프 안내깃의 성능 향상을 위한 수치해석적 연구)

  • Park, Hyun-Chang;Kim, Sung;Yoon, Joon-Yong;Choi, Young-Seok
    • The KSFM Journal of Fluid Machinery
    • /
    • v.15 no.6
    • /
    • pp.58-63
    • /
    • 2012
  • This paper presents a numerical study on the performance improvement of axial-flow pump with guide vanes. Design optimization for guide vanes in an axial-flow pump has been studied through the implementation of a commercial CFD code and DOE (design of experiments). We also discussed how to improve the performance of the axial-flow pump by designing the guide vanes. Geometric design variables were defined by the meridional plane and vane plane development of guide vanes. The effect of hub tip ratio analyzed the meridional plane of guide vanes. The importance of the geometric design variables was analyzed using $2^k$ factorial designs. The objective functions for guide vane geometric variables were defined as the total efficiency and the total head at the design flow rate. From the $2^k$ factorial design results, the important design variables were found and the performance was increased in comparison with the base design model.

Power study for 2 × 2 factorial design in 4 × 4 latin square design (4 × 4 라틴방격모형 내 2 × 2 요인모형의 검정력 연구)

  • Choi, Young Hun
    • Journal of the Korean Data and Information Science Society
    • /
    • v.25 no.6
    • /
    • pp.1195-1205
    • /
    • 2014
  • Compared with single design, powers of rank transformed statistic for testing main and interaction effects for $2{\times}2$ factorial in $4{\times}4$ latin square design are rapidly increased as effect size and replication size are increased. In general powers of rank transformed statistic are superior without regard to the diversified effect composition and the type of error distributions as nontesting factors are few and effect size are small. Powers of rank transformed statistic show much higher level than those of parametric statistic in exponential and double exponential distributions. Further powers of rank transformed statistic are very similar with those of parametric statistic in normal and uniform distributions.

Number of Equivalence Classes of a Parallel Flats Fraction for the 3" Factorial Design

  • Um, Jung-Koog
    • Journal of the Korean Statistical Society
    • /
    • v.10
    • /
    • pp.122-127
    • /
    • 1981
  • A parallel flats fraction for the $3^n$ factorial is symbolically written as $At=C=(C_1 C_2 \cdots C_f)$ where C is a rxf matrix and A is rxn matrix with rank r. It is shown that the set of all possible parallel flats fraction C for a given A and given size can be partitioned into equivalence classes. The number of those classes are enumerated in general.

  • PDF

Alias Component Permutation Matrices (ACPM) for the $3^n$ Parallel Fractional Factorial Design

  • Um, Jung-Koog
    • Journal of the Korean Statistical Society
    • /
    • v.9 no.1
    • /
    • pp.1-12
    • /
    • 1980
  • A parallel flats faraction for the $3^n$ factorial experiment is symbolically written as $At = C(r\timesf)$ where $A(r\timesn)$ is of rank r. The A-matrix partitions the nonnegligible effects into $(3^{n-r}-1)/2+1$ alias sets. The $U_i$ effects in the i-th alias set are related pairwise by elements from $S_3$, the symmetric group on three symbols. For each alias set the f flats produce an $f \times u_i$ alias componet permutation matrices (ACPM) with elements from $S_3$. All the information concerning the relationships among levels of the effects is contained in the ACPM.

  • PDF

A Study on Optimal Operation Conditions for an Electronic Device Alignment System by Using Design of Experiments (실험계획법을 이용한 전자부품 위치정렬장치 최적 운영조건 사례연구)

  • Lee, Dong Heon;Lee, Mi Lim;Bae, Suk Joo
    • Journal of Korean Society for Quality Management
    • /
    • v.43 no.3
    • /
    • pp.453-466
    • /
    • 2015
  • Purpose: The purpose of this study is to design a systematic method to estimate optimal operation conditions of design variables for an electronic device alignment system. Method: The 2-level factorial design and the central composite design are used in order to plan experiments. Based on the experiment results, a regression model is established to find optimal conditions for the design variables. Results: 3 of 5 design variables are selected as major factors that affect the alignment system significantly. The optimized condition for each variable is estimated by using a sequential experiment plan and a quadratic regression model. Conclusion: The method designed in this study provides an efficient and systematic plan to select the optimized operation condition for the design variables. The method is expected to improve inspection accuracy of the system and reduce the development cost and period.

Reliability analyses of a prototype soil nail wall using regression models

  • Sivakumar Babu, G.L.;Singh, Vikas Pratap
    • Geomechanics and Engineering
    • /
    • v.2 no.2
    • /
    • pp.71-88
    • /
    • 2010
  • Soil nailing technique is being widely used for stabilization of vertical cuts because of its economic, environment friendly and speedy construction. Global stability and lateral displacement are the two important stability criteria for the soil nail walls. The primary objective of the present study is to evaluate soil nail wall stability criteria under the influence of in-situ soil variability. Finite element based numerical experiments are performed in accordance with the methodology of $2^3$ factorial design of experiments. Based on the analysis of the observations from numerical experiments, two regression models are developed, and used for reliability analyses of global stability and lateral displacement of the soil nail wall. A 10 m high prototype soil nail wall is considered for better understanding and to highlight the practical implications of the present study. Based on the study, lateral displacements beyond 0.10% of vertical wall height and variability of in-situ soil parameters are found to be critical from the stability criteria considerations of the soil nail wall.

Quantitative Analysis of Taurine Using Near Infrared Spectrometry (NIRS) (근적외선 분광분석법을 이용한 타우린의 정량 분석)

  • Cho, Chang-Hee;Kim, Hyo-Jin;Meang, Dae-Young;Seo, Sang-Hun;Cho, Jung-Hwan
    • YAKHAK HOEJI
    • /
    • v.42 no.6
    • /
    • pp.545-551
    • /
    • 1998
  • Near Infrared transmittance Spectroscopy (NIRS) was used to evaluate and quantify the pharmaceutical active compounds. In the paper, taurine (2-Aminoethanesulfonic acid) was quantitatively analyzed in commercial pharmaceutical preparations. For calibration a central composite factorial design was used to determine concentrations of ingredients in reference samples. For the quantitative analysis of taurine, the most suitable data analysis method includes the calculation of second derivatives and a partial least squares regression (PLSR) model. By NIR spectrometry, combined with PLSR, the taurine concentration was successfully predicted with a relative standard error of prediction (SEP) lower than 1.04%.

  • PDF