Browse > Article
http://dx.doi.org/10.12989/scs.2016.21.6.1327

Application of the full factorial design to modelling of Al2O3/SiC particle reinforced al-matrix composites  

Altinkok, Necat (Department of Machine and Metal Technologies Sakarya University, Hendek Vocational School)
Publication Information
Steel and Composite Structures / v.21, no.6, 2016 , pp. 1327-1345 More about this Journal
Abstract
$Al_2O_3$/SiC particulate reinforced (Metal Matrix Composites) MMCs which were produced by using stir casting process, bending strength and hardening behaviour were obtained using an analysis of variance (ANOVA) technique that uses full factorial design. Factor variables and their ranges were: particle size $2-60{\mu}m$; the stirring speed 450 rpm, 500 rpm and the stirring temperature $620^{\circ}C$, $650^{\circ}C$. An empirical equation was derived from test results to describe the relationship between the test parameters. This model for the tensile strength of the hybrid composite materials with $R^2$ adj = 80% for the bending strength $R^2$ adj = 89% were generated from the data. The regression coefficients of this model quantify the tensile strength and bending strengths of the effects of each of the factors. The interactions of all three factors do not present significant percentage contributions on the tensile strength and bending strengths of hybrid composite materials. Analysis of the residuals versus was predicted the tensile strength and bending strengths show a normalized distribution and thereby confirms the suitability of this model. Particle size was found to have the strongest influence on the tensile strength and bending strength.
Keywords
hybrid particulate reinforced composites; the tensile strength; bending strengths; hardness; porosity; full factorial design; analysis of variance (ANOVA);
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Alpas, A.T. and Zhang, J. (1994), "Effect of microstructure (particulate size and volume fraction) and counterface material on the sliding wear resistance of particulate-reinforced aluminium matrix composites", Metal. Mater. Trans. A, 25(5), 969-983.   DOI
2 Anand, K., Mahapatra, M.M. and Jha, P.K. (2013), "Modelling the abrasive wear characteristics of in-situ synthesized Al-4.5%Cu/TiC composites", Wear, 306(1-2), 170-178.   DOI
3 Azmah, H.M.A., Chang, C.S. and Khang, C.O. (2011), "Effect of a two-step solution heat treatment on the microstructure and mechanical properties of 332 aluminium silicon cast alloy", Mater. Des., 32(4), 2334-2338.   DOI
4 Bensam, R., Marimuthu, P., Prabhakar, M. and Anandakrishnan, V. (2012), "Effect of sintering temperature and time intervals on workability behaviour of Al-SiC matrix P/M composite", Int. J. Adv. Manufact. Techn., 61(1), 237-252.   DOI
5 Caracostas, C.A., Chiou, W.A., Fine, M.E. and Cheng, H.S. (1997), "Tribological properties of aluminium alloy matrix TiB2 composite prepared by in-situ processing", Metal. Mater. Trans. A, 28(2), 491-502.   DOI
6 Carmita, C.N. (2013), "Optimization of cutting parameters for minimizing energy consumption in turning of AISI 6061 T6 using taguchi methodology and ANOVA", J. Clean. Produc., 53, 195-203.   DOI
7 Ceschini, L., Minak, G. and Morri, A. (2006), "Tensile and fatigue properties of the AA6061/20 vol.% $Al_2O_3p$ and AA7005/10 vol.% $Al_2O_3p$ composites", Comp. Sci. Tech., 66(2), 333-342.   DOI
8 Chou, S.N., Huang, J.L., Lii, D.F. and Lu, H.H. (2006), "Mechanical properties of $Al_2O_3$/aluminium alloy A356 composite manufactured by squeeze casting", J. Alloy. Compounds, 419(1-2), 98-102.   DOI
9 Chu, S. and Wu, R. (1999), "The structure and bending properties of squeeze-cast composites of A356 aluminium alloy reinforced with alumina particles", Comp. Sci. Tech., 59(1), 157-162.   DOI
10 Devaraju, A., Kumar, A. and Kotiveerachari, B. (2013a), "Influence of rotational speed and reinforcements on wear and mechanical properties of aluminium hybrid composites via friction stir processing", Mater. Des., 45, 576-585.   DOI
11 Devaraju, A., Kumar, A., Kumaraswamy, A. and Kotiveerachari, B. (2013b), "Influence of reinforcements (SiC and $Al_2O_3$) and rotational speed on wear and mechanical properties of aluminium alloy 6061-T6 based surface hybrid composites produced via friction stir processing", Mater. Des., 2013, 51, 331-341.
12 Dwivedi, S.P., Kumar, S. and Kumar, A. (2012), "Effect of turning parameters on surface roughness of A356/5%SiCp composite produced by electromagnetic stir casting", J. Mech. Sci. Tech., 26(12), 3973-3979.   DOI
13 Elayaperumal, R. and Issac, F. (2013), "A statistical analysis of optimization of wear behaviour of Al-$Al_2O_3$ composites using taguchi technique", Proc. Eng., 64, 973-982.   DOI
14 Ezatpour, H.R., Sajjadi, S.A., Sabzevar, M.H. and Huang, Y. (2014), "Investigation of microstructure and mechanical properties of Al6061-nanocomposite fabricated by stir casting", Mater. Des., 55, 921-928.   DOI
15 Fisher R.A. (1961), Design of Experiments, Oliver Boyd, Edinburgh, UK.
16 Fukumoto, I., Mekaru, S., Shibata, S. and Nakayama, K. (2006), "Fabrication of composite material using alumina agglomerated sludge and aluminium powder by spark plasma sintering", Int. J. Ser Solid Mech. Mater. Eng., 49(1), 91-94.
17 Gopalakrishnan, S. and Murugan, N. (2012), "Production and wear characterization of AA 6061 matrix titanium carbide particulate reinforced composite by enhanced stir casting method", Comp. Part B: Eng., 43(2), 302-308.   DOI
18 Han, N.L., Wang, Z.G. and Sun, L.Z. (1995), "Low cycle fatigue behaviour of SiCp reinforced aluminium matrix composite at ambient and elevated temperature", Scr. Metal. Mater., 32(11), 1739-1745.   DOI
19 Gui, M.C., Wang, D.B., Wu, J.J., Yuan, G.J. and Li, C.G. (2000), "Microstructure and mechanical properties of cast (Al-Si)/SiCp composites produced by liquid and semisolid double stirring process", Mater. Sci. Tech., 16(5), 556-563.   DOI
20 Gupta, M., Ibrahim, I.A., Mohamed, F.A. and Lavernia, E.J. (1991), "Wetting and interfacial reactions in $Al-Li-SiC_p$ metal matrix composites processed by spray atomization and deposition", J. Mater. Sci., 26(24), 6673-6684.   DOI
21 Hashim, J., Looney, L. and Hashmi, M.S.J. (1999), "Metal matrix composites: production by the stir casting method", J. Mater. Proc. Tech., 92-93, 1-7.   DOI
22 Hashim, J., Looney, L. and Hashmi, M.S.J. (2002), "Particle distribution in cast metal matrix composites", J. Mater. Proc. Tech., 123(2), 251-257.   DOI
23 Kennedy, A.R. and Wyatt, S.M. (2000), "The effect of processing on mechanical properties and interfacial strength of aluminium/TiC MMCs", Comp. Sci. Tech., 60(2), 307-314.   DOI
24 Kim, Y.H., Lee, C.S. and Han, K.S. (1992), "Fabrication and mechanical properties of aluminium matrix composite materials", J. Compos. Mater., 26, 1062-1086.   DOI
25 Kok, M. (2005), "Production and mechanical properties of $Al_2O_3$ particle-reinforced 2024 aluminum alloy composites", J. Mate. Proc. Tech., 161(3), 7-381.
26 Kong, H.B., Jien, L.S. and Ten, J.M. (1996), "The Interfacial compounds and SEM fractography of squeezecast SiCp /6061 Al composites", Mater. Sci. Eng. A, 206(1), 110-119.   DOI
27 Patel, R.R. and Patel, V.A. (2012), "Effect of machining parameters on Surface roughness and power consumption for 6063 Al alloy TiC Composites (MMCs)", Int. J. Eng. Rese. App., 2(4), 295-300.
28 Lloyd, D.J. and Brotzen, F.R. (1999), "Particle reinforced aluminium and mg matrix composites", Int. Mater. Reviews, 39(1), 1-39.   DOI
29 Naher, S., Brabazon, D. and Looney, L. (2003), "Simulation of the stir casting process", J. Mater. Proc. Tech., 143-144, 567-571.   DOI
30 Pai, D., Rao, S., Shetty, R. and Nayak, R. (2010), "Application of response surface methodology on surface roughness in grinding of aerospace materials (6061Al-15Vol% SiC25p)", ARPN J. Eng. App. Sci., 5(6), 23-28.
31 Patel, P.R., Patel, B.B. and Patel, V.A. (2013), "Effect of machining parameters on surface roughness for Al-TiC (5&10%) metal matrix composite using RSM", Int. J. Res. Eng. Tech., 2(1), 65-71.   DOI
32 Peters, P.W.M., Hemptenmacher, J. and Schurmann, H. (2010), "The fibre/matrix interface and its influence on mechanical and physical properties of Cu-MMC", Comp. Sci. Tech., 70(9), 1321-1329.   DOI
33 Prabu, S.B., Karunamoorthy, L., Kathiresan, S. and Mohan, B. (2006), "Influence of stirring speed and stirring time on distribution of particles in cast metal matrix composite", J. Mater. Proc. Tech., 171(2), 268-273.   DOI
34 Punith, G.K., Prakash, J.N., Gowda, S. and Satish, B.B. (2015), "Effect of Particulate Reinforcement on the Mechanical Properties of Al2024-WC MMCs", J. Miner. Mater. Character. Eng., 3(6), 469-476.
35 Radhika, N., Subramanian, R. and Venkat, P.S. (2011), "Tribological behaviour of aluminium/ alumina/graphite hybrid metal matrix composites taguchi's techniques", J. Miner. Mater. Character. Eng., 10(5), 427-443.
36 Roy, R.K. (2001), Design of Experiments using the Taguchi Approach: 16 Steps to Product and Process Improvement, John Wiley & Sons, Inc., New York, NY, USA.
37 Rajmohan, T., Palanikumar, K. and Ranganathan, S. (2013), "Evaluation of mechanical and wear properties of hybrid aluminium matrix composites", Trans. Nonfer. Metal. Soc. China, 23(9), 2509-2517.   DOI
38 Rajmohan, T., Palanikumar, K. and Arumugam, S. (2014), "Synthesis and characterization of sintered hybrid aluminium matrix composites reinforced with nanocopper oxide particles and micro silicon carbide particles", Comp., Part B, 59, 43-49.   DOI
39 Ross, P.J. (1996), Taguchi Techniques for Quality Engineering, (2nd Edition), McGraw-Hill, New York, NY, USA.
40 Sajjadi, S.A., Parizi, M.T., Ezatpour, H.R. and Sedghi, A. (2012), "Fabrication of A356 composites reinforced with micro and nano $Al_2O_3$ particles by a developed compocasting method and study of their properties", J. Alloys Compound., 511(1), 226-231.   DOI
41 Salvador, M.D., Amigó, V., Martinez, N. and Busquets, D.J. (2003), "Microstructure and mechanical behaviour of Al-Si-Mg alloys reinforced with Ti-Al inter metallics", J. Mater. Proc. Tech., 143-144, 605-611.   DOI
42 Sato, A. and Mehrabian, R. (1976), "Aluminium matrix composites: Fabrication and properties", Metall. Mater. Trans. B, 7(3), 443.
43 Soon, H., Chung, H. and Kyung, H. (1995), "The effects of processing parameters on mechanical properties of SiCw/2124Al composites", J. Mater. Proc. Tech., 48(1-4), 349-355.   DOI
44 Srivatsan, T.S. (1996), "Microstructure, the tensile properties and fracture behaviour of $Al_2O_3$ particulate reinforced aluminium alloy metal matrix composites", J. Mater. Sci., 31(5), 1375-1388.   DOI
45 Wang, Y.Q., Afsar, A.M., Jang, J.H., Han, K.S. and Song, J.L. (2010), "Room temperature dry and lubricant wear behaviours of $Al_2O_3f/SiCp/Al$ hybrid metal matrix composites", Wear, 268(7-8), 863-870.   DOI
46 Swamy, A., Ramesha, A., Kumar, G. and Prakash, J. (2011), "Effect of particulate reinforcements on mechanical properties of Al6061-WC and Al6061-Gr MMCs", J. Miner. Mater. Character. Eng., 10(12), 1141-1152.   DOI
47 Toptan, F., Kerti, I. and Rocha, L.A. (2012), "Reciprocal dry sliding wear behaviour of $B_4Cp$ reinforced aluminium alloy matrix composites", Wear, 290-291, 74-85.   DOI
48 Trezona, R.I., Pickles, M.J. and Hutchings, I.M. (2000), "A full factorial investigation of the erosion durability of automotive clear coats", Trib. Inter., 33(8), 559-571.   DOI
49 Yilmaz, O. and Buytoz, S. (2001), "Abrasive wear of $Al_2O_3$-reinforced aluminium-based MMCs", Comp. Sci. Tech., 61(16), 2381-2392.   DOI
50 Zhu, H.X. and Liu, S.K. (1993), "Mechanical properties of squeeze cast zinc alloy matrix composites containing alpha-alumina fibers", Comp., 24(6), 437.   DOI