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ABSTRACT

A parallel flats fraction for the 3~ factorial experiment is symbolically written as At=C=(C,
C,+:Cs) where C is a rxf matrix and A is rxn matrix with rank 7. It is shown that the set of all
possible parallel flats fraction C for a given A ard given size can be partitioned into equivalence
classes. The number of those classes are enumerated in general.

1. Introduction

A parallel flats fraction for the 3 factorial experiment is defined as the union of
flats, {f|At=Ci(mod 3), i=1,2,---f} and is symbolically written as Af=C=(C,Cs---Cy)
where A is a x#n matrix with rank » and C is a X/ matrix. Note that f denotes
the number of flats.

It is important to relate the solution f to the C-matrix. Since C is a X/ matrix and
all entries are elements of GF(3), there are 37 different matrices for C. If attention
is restricted to the different columns then there are G;)x( f1) possible matrices.

2. Basic Theorems

We quote the following two theorems derived by Anderson and Mardekian (1979).
Theorem 1. Let T be the design obtained from the 37 parallel flats fraction given by
the solutions of At=C and let T* be the design obtained from the solutions to Af=C**
where C** is obtained by adding the vector V with components in GF(3) to each of
the columns of C. Then
(1) E is estimable from the runs of T if and only if
E is estimable from the runs of T%;
(2) if X and X* are the X-matrices corresponding
to T and T* then det (X* X*)=det (X' X).
Theorem 2. Let T be the design obtained from the 3= parallel flats fraction given by
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the solutions of Af=C and let T* be the design obtained from the solutions of At=2C.
Then
(1) E is estimable from the runs of T if and only if
E is estimable from the runs of T*;
(2) if X and X* are the X-matrices corresponding to
T and T* then det (X* X*)=det (X' X).

Therem 1 and Theorem 2 can be combined to establish designs which are equivalent
with respect to estimability and the determinant of the resulting X’ X-matrices. In par-
ticular, If T is obtained from solutions to Aft=C and T* is obtained from solutions to
At=2 C+(V, V,--, V) then the designs T and T* can be considered equivalent.

_An implication of Theorem 1 is that no generality is lost with respect to estimability
and the determinant of the information matrix if attention is restricted to parallel-flats
fractions where the first column of C is chosen to be the vector of O’seGF(3) in order

to define the observations in the first flat. Inthis case there are <?j’::11>><(f—1)! different

ways to obtain C-matrix.

We choose V such that there exists one column of O’s after adding V' to each column
of C. Then t}:e- column with O’s will be the first column of the matrix which is obtai-
ned by adding V to C.

Example. Let C=70 0 1} and 12[0:\ Then

010 2
C+V=[001]-—>[001]
o202 022

Another implication of Theorem 1 and Theorem 2 is that C and C*, where C* is ob-
tained by adding the vector V with components in GF(3) to each of the columns of C,
are equivalent, and also C and 2C are equivalent. That is, C, C* and 2C belong to the
same equivalence class.

Theorem 3. Suppose that C is a #Xf matrix such that the first column contains only
0’s. Then the maximum number of elements in an equivalence class is 2X fxX (f—1)!.

Proof. For each column of C, except the first column with O’s, there exists a nonzero
vector v such that makes that column O after adding the V. Therfore, there are f—1
matrice; and hence f matrices (including C itself) belonging to the same equivalence
class.

1t is clear that no generality is lost with respect to estimabillity and the determinant
of the information matrix when the columns of C are permuted, except for the first
column with O's. Therefore, for each matrix of f matrices, (f—1)! matrices belong to
the same equivalence class.

The matrices obtained by multiplying these /X (f—1)! matrices by 2 belong to the
same equivalence class. This completes the proof.
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If C is a 2x3 matrix then there are 56 matrices and the maximum number of elem-
ents in an equivalence class is 12.

3. Number of Equivalence Classes of C-matrix

In order to find the number of equivalence classes we apply Burnside’s Lemma. Let G
be a group of permutations acting on a finite set S. G induces an equivalence relation
on S. Two elements s, s, &S are equivalent, s;~s,, if and only if there exists c=G
such that (s,) o=s, This equivalence relation partitions S into equivalence classes.

Lemma. Burnside

The number of equivalence classes of S equals [GI”Z&C,(U), where |G| denotes the

number of elements of G, and for each ¢&=G,%,(¢) denotes the number of elements of
S that are invariant under ¢, that is, X,(¢)=]{s<S|(s)oc=s}]|.

Proof. We consider all pairs (g, s) with e=G, s=S, and (s)o=s. The number of
these pairs can be counted in two ways. For each fixed =G we can count the number
of s satisfying (s)o=s and, therefore, the number of pairs is vgaxs(a). On the other ha-

nd, for each sS&S we can count the number of =G with (s)o=s. Donoting this number
by |G|, we have

v;gxx: (o) :%}q |G}

Let C; be the set of equivalence classes and let s; and s, belong to the same equival-
ence class O. Then |G,,|=|G|/]0}=|Gs;.| Therefore,

ZX:(O‘):Z|G,[:Z Z‘Gsi

7€6 s€s 0€cg €0
=X0] -
0ECg

Gl/101=1G| - |Cs] -

Hence the number of equivalence classes is
|CS[:|G|':§GXs(0)-

This completer the proof.

We now apply Burnside’s Lemma to find the number of equivalence classes for C-
matrix. Suppose that C-matrix has # rows and f columns, and all entries are elements
of GF(3). Our attention is restricted to distinct columns only.

Let S; be the permutation group on the set {0,1,2,-+-,f—1} and V be the set of all
possible columns for the rXxf matrix. Let W={1,2} and S be the set of all possible
¥ X f matrix which has different columns.

!
Then clearly |S;|=f1|{V|=3", | W|=2, and IS!:_(I—V"fIé—IfT_

Let o, #;, 4s,---,#s_; be the column vectors of 7x f matrix and each permutation of

Sr acts on the columns of the matrix. For example, if we have (012)&S,, then
(o 1 1) (012)=C(s tho %1).
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For v&V and w=W let us define the following operations
(o 1o+t JV= (o +0++ths_1 +0)
(o syt DW= (o X W Uy X W+t X W)
Then clearly we have the following relations
(1) vea=0ov
(2) gow=weoo
(3) vew=we(wxw). If w=2, then vew=wo(—v),
Let G be the set of all cevew, 0<=Sy, v&V and weW, that is, G= {govow|oc=Sy,
veV, we W}, Define the binary operation A by
(01°01°W1)A(02°U2°w2):(010'2)°(1)1+1)2)°17 if wi=w,=1
=(00) oW+ v)ow,, if wi=1, w,=2
=(010:)°vz0w;, where v, Xw,+v,=vz0un,
if w=2, wy=1
=(0102)°v501, where v3= (v, Xw,+v5) X w,,
if wy=w,=2.
Then clearly e=e=0-1 is an identity element in G and every element in G has an
inverse element in G. It can be easily shown that
((01°711°w1)A(02°Uz°wz))A(03°Us°Wa):(01°U1°W1)A((Uz°vz°wz)A(¢73°U3°W3))
Hence G is a group with |G|=f1X|V]|x2.
Let two matrices ¢, ¢;&s be equivalent, ¢,~c¢,, if and only if, there exists govowe=G
such that
() (oevow) =c,,
This equivalence relation partitions S into equivalence classes. Hence we set forth the
following theorem.
Theorem 4. The number of equivalence classes of S which is the set of 7 X f matrices

with distinct columns equals
IGI™ S %@ =IGI S|+ H:Ky)  if 31f
=|GI'(IS| + K, + H K,) if3|f
=3 —f1. V] - ___ Vit
where |V|=3", |G|=f1.|V]-2, S= GVi=N1
H=|VIUV]|=3)(VI-(f=3) if 3|f

___aavi-n .
K= 379 < ((f/3)D if 31f

Hy=(VI-DVI=2)-(| V)= (f—2)) if fis odd
=(VI=DUVI=2)-(| V| —=(f—1)) if f is even

- SV
o= o

where [ f/2] denotes the largest integer which is smaller than f/2.
The details of the proof are still somewhat lengthy and have been omitted here.
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Table 1 shows the number of equivalence classes for the various values for 7 and f.
Table 2 shows the equivalence classes of C-matrix for the 3¢ factorial, and matrics
with the first column containing O are presented.

Table 1 The Number of Equivalence Classes of C-Matrix

f
2 3 4 5 6 7 8
r

2 4 8 10 10 8 4 1
31 13 65 364 1,534 5, 642 16, 588 41,470
4| 40 560 10, 660 158, 548 2,008, 448 21, 469, 240 198, 590, 470
5|121 4,961 295,240 13, 942, 588 553, 057, 604 18, 720, 164, 584 522, 244, 855, 228
6 | 364 44, 408 8,038,030 1,160, 757,598 140, 643, 544, 860 43, 578, 166, 217, 508 386, 973, 008, 116, 223

Table 2 Equivalence Classes of C-Matrix For The 3* Factorial

Class 1
001 001 022 010 010 022
012 021 021 021 012 012
002 002 011 020 020 011
021 012 012 012 021 021
Class 2
012 021 021 021 012 012
001 001 022 010 010 022
021 012 012 012 021 021
002 002 011 020 020 011
Class 3
001 001 022 010 010 022
010 022 010 001 022 001
002 002 011 020 020 011
020 011 020 002 011 002
Class 4
001 001 022 010 010 022
011 020 002 011 002 020
002 002 011 020 020 011
022 010 001 022 001 010
Class 5

000 000
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