Number of Equivalence Classes of a Parallel Flats Fraction for the 3ⁿ Factorial Design

Jung-Koog Um*

ABSTRACT

A parallel flats fraction for the 3ⁿ factorial experiment is symbolically written as $A\underline{t} = C = (\underline{C_1} \\ \underline{C_2} \\ \dots \\ \underline{C_r})$ where C is a rxf matrix and A is rxn matrix with rank r. It is shown that the set of all possible parallel flats fraction C for a given A and given size can be partitioned into equivalence classes. The number of those classes are enumerated in general.

1. Introduction

A parallel flats fraction for the 3^n factorial experiment is defined as the union of flats, $\{\underline{t} \mid A\underline{t} = \underline{C}_i \pmod{3}, i = 1, 2, \dots f\}$ and is symbolically written as $A\underline{t} = C = (\underline{C}_1\underline{C}_2 \dots \underline{C}_f)$ where A is a $r \times n$ matrix with rank r and C is a $r \times f$ matrix. Note that f denotes the number of flats.

It is important to relate the solution \underline{t} to the C-matrix. Since C is a $r \times f$ matrix and all entries are elements of GF(3), there are $3^{r \times f}$ different matrices for C. If attention is restricted to the different columns then there are $\binom{3^r}{f} \times (f!)$ possible matrices.

2. Basic Theorems

We quote the following two theorems derived by Anderson and Mardekian (1979).

Theorem 1. Let T be the design obtained from the 3^n parallel flats fraction given by the solutions of $A\underline{t}=C$ and let T^* be the design obtained from the solutions to $A\underline{t}=C^{**}$ where C^{**} is obtained by adding the vector V with components in GF(3) to each of the columns of C. Then

- (1) E is estimable from the runs of T if and only if E is estimable from the runs of T^* ;
- (2) if X and X^* are the X-matrices corresponding to T and T^* then det $(X^{*'} X^*)$ =det (X' X).

Theorem 2. Let T be the design obtained from the 3^n parallel flats fraction given by

^{*} Department of Computer Science, Sogang University

the solutions of $A\underline{t}=C$ and let T^* be the design obtained from the solutions of $A\underline{t}=2C$. Then

- (1) E is estimable from the runs of T if and only if E is estimable from the runs of T^* ;
- (2) if X and X^* are the X-matrices corresponding to T and T^* then det $(X^{*'}, X^*)$ =det (X', X).

Therem 1 and Theorem 2 can be combined to establish designs which are equivalent with respect to estimability and the determinant of the resulting X' X-matrices. In particular, If T is obtained from solutions to $A\underline{t}=C$ and T^* is obtained from solutions to $A\underline{t}=C$ and T^* can be considered equivalent.

An implication of Theorem 1 is that no generality is lost with respect to estimability and the determinant of the information matrix if attention is restricted to parallel-flats fractions where the first column of C is chosen to be the vector of C is C in order to define the observations in the first flat. In this case there are $\binom{3^r-1}{f-1} \times (f-1)!$ different ways to obtain C-matrix.

We choose \underline{V} such that there exists one column of O's after adding \underline{V} to each column of C. Then the column with \underline{O} 's will be the first column of the matrix which is obtained by adding \underline{V} to C.

Example. Let
$$C = \begin{bmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix}$$
 and $\underline{V} = \begin{bmatrix} 0 \\ 2 \end{bmatrix}$ Then
$$C + \underline{V} = \begin{bmatrix} 0 & 0 & 1 \\ 2 & 0 & 2 \end{bmatrix} \longrightarrow \begin{bmatrix} 0 & 0 & 1 \\ 0 & 2 & 2 \end{bmatrix}$$

Another implication of Theorem 1 and Theorem 2 is that C and C^* , where C^* is obtained by adding the vector \underline{V} with components in GF(3) to each of the columns of C, are equivalent, and also C and 2C are equivalent. That is, C, C^* and 2C belong to the same equivalence class.

Theorem 3. Suppose that C is a $r \times f$ matrix such that the first column contains only O's. Then the maximum number of elements in an equivalence class is $2 \times f \times (f-1)!$.

<u>Proof.</u> For each column of C, except the first column with O's, there exists a nonzero vector \underline{v} such that makes that column \underline{O} after adding the \underline{V} . Therfore, there are f-1 matrices and hence f matrices (including C itself) belonging to the same equivalence class.

It is clear that no generality is lost with respect to estimability and the determinant of the information matrix when the columns of C are permuted, except for the first column with O's. Therefore, for each matrix of f matrices, (f-1)! matrices belong to the same equivalence class.

The matrices obtained by multiplying these $f \times (f-1)!$ matrices by 2 belong to the same equivalence class. This completes the proof.

124 統計學研究

If C is a 2×3 matrix then there are 56 matrices and the maximum number of elements in an equivalence class is 12.

3. Number of Equivalence Classes of C-matrix

In order to find the number of equivalence classes we apply Burnside's Lemma. Let G be a group of permutations acting on a finite set S. G induces an equivalence relation on S. Two elements s_1 , $s_2 \in S$ are equivalent, $s_1 \sim s_2$, if and only if there exists $\sigma \in G$ such that (s_1) $\sigma = s_2$. This equivalence relation partitions S into equivalence classes.

Lemma. Burnside

The number of equivalence classes of S equals $|G|^{-1}\sum_{\sigma\in G}\chi_{s}(\sigma)$, where |G| denotes the number of elements of G, and for each $\sigma\in G$, $\chi_{s}(\sigma)$ denotes the number of elements of S that are invariant under σ , that is, $\chi_{s}(\sigma)=|\{s\in S\mid (s)\sigma=s\}|$.

<u>Proof.</u> We consider all pairs (σ, s) with $\sigma \in G$, $s \in S$, and $(s)\sigma = s$. The number of these pairs can be counted in two ways. For each fixed $\sigma \in G$ we can count the number of s satisfying $(s)\sigma = s$ and, therefore, the number of pairs is $\sum_{\sigma \in G} \chi_s(\sigma)$. On the other hand, for each $s \in S$ we can count the number of $\sigma \in G$ with $(s)\sigma = s$. Donoting this number by $|G_s|$, we have

$$\sum_{\sigma \in G} \chi_s = (\sigma) = \sum_{s \in S} |G_s|$$

Let C_s be the set of equivalence classes and let s_1 and s_2 belong to the same equivalence class O. Then $|G_{s_1}| = |G|/|0| = |G_{s_2}|$ Therefore,

$$\sum_{\sigma \in G} \chi_s(\sigma) = \sum_{s \in S} |G_s| = \sum_{0 \in C_S} \sum_{s \in 0} |G_s|$$
$$= \sum_{0 \in C_S} |0| \cdot |G|/|0| = |G| \cdot |C_s| \cdot$$

Hence the number of equivalence classes is

$$|C_s| = |G|^{-1} \sum_{\sigma \in G} \chi_s(\sigma).$$

This completer the proof.

We now apply Burnside's Lemma to find the number of equivalence classes for C-matrix. Suppose that C-matrix has r rows and f columns, and all entries are elements of GF(3). Our attention is restricted to distinct columns only.

Let S_f be the permutation group on the set $\{0, 1, 2, \dots, f-1\}$ and V be the set of all possible columns for the $r \times f$ matrix. Let $W = \{1, 2\}$ and S be the set of all possible $r \times f$ matrix which has different columns.

Then clearly
$$|S_f| = f! |V| = 3^r$$
, $|W| = 2$, and $|S| = \frac{|V|!}{(|V| - f)!}$

Let $\underline{u_0}$, $\underline{u_1}$, $\underline{u_2}$, \dots , $\underline{u_{f-1}}$ be the column vectors of $r \times f$ matrix and each permutation of S_f acts on the columns of the matrix. For example, if we have $(012) \in S_3$, then

$$(\underline{u_0} \ \underline{u_1} \ \underline{u_2}) \ (012) = (\underline{u_2} \ \underline{u_0} \ \underline{u_1}).$$

For $v \in V$ and $w \in W$ let us define the following operations

$$(\underline{u_0} \ \underline{u_1\cdots u_{f-1}})v = (\underline{u_0} + v\cdots \underline{u_{f-1}} + v)$$

$$(\underline{u_0} \ \underline{u_1\cdots u_{f-1}})w = (\underline{u_0} \times w \ \underline{u_1} \times w\cdots \underline{u_{f-1}} \times w)$$

Then clearly we have the following relations

- (1) $v \circ \sigma = \sigma \circ v$
- (2) $\sigma \circ w = w \circ \sigma$
- (3) $v \circ w = w \circ (v \times w)$. If w = 2, then $v \circ w = w \circ (-v)$.

Let G be the set of all $\sigma \circ v \circ w$, $\sigma \in S_f$, $v \in V$ and $w \in W$, that is, $G = \{\sigma \circ v \circ w \mid \sigma \in S_f, v \in V, w \in W\}$. Define the binary operation \triangle by

$$(\sigma_{1} \circ v_{1} \circ w_{1}) \triangle (\sigma_{2} \circ v_{2} \circ w_{2}) = (\sigma_{1} \sigma_{2}) \circ (v_{1} + v_{2}) \circ 1, \text{ if } w_{1} = w_{2} = 1$$

$$= (\sigma_{1} \sigma_{2}) \circ (v_{1} + v_{2}) \circ w_{2}, \text{ if } w_{1} = 1, w_{2} = 2$$

$$= (\sigma_{1} \sigma_{2}) \circ v_{3} \circ w_{1}, \text{ where } v_{1} \times w_{1} + v_{2} = v_{3} \circ w_{1},$$

$$\text{if } w_{1} = 2, w_{2} = 1$$

$$= (\sigma_{1} \sigma_{2}) \circ v_{3} \circ 1, \text{ where } v_{3} = (v_{1} \times w_{1} + v_{2}) \times w_{2},$$

$$\text{if } w_{1} = w_{2} = 2.$$

Then clearly $e=e \circ \underline{O} \circ 1$ is an identity element in G and every element in G has an inverse element in G. It can be easily shown that

$$((\sigma_1 \circ v_1 \circ w_1) \triangle (\sigma_2 \circ v_2 \circ w_2)) \triangle (\sigma_3 \circ v_3 \circ w_3) = (\sigma_1 \circ v_1 \circ w_1) \triangle ((\sigma_2 \circ v_2 \circ w_2) \triangle (\sigma_3 \circ v_3 \circ w_3))$$
Hence G is a group with $|G| = f! \times |V| \times 2$.

Let two matrices c_1 , $c_2 \in s$ be equivalent, $c_1 \sim c_2$, if and only if, there exists $\sigma \circ v \circ w \in G$ such that

$$(c_1)(\sigma \circ v \circ w) = c_2$$

This equivalence relation partitions S into equivalence classes. Hence we set forth the following theorem.

Theorem 4. The number of equivalence classes of S which is the set of $r \times f$ matrices with distinct columns equals

$$|G|^{-1} \sum_{\sigma \in G} \chi_{s}(\sigma) = |G|^{-1} (|S| + H_{2}K_{2}) \quad \text{if } 3|f$$

$$= |G|^{-1} (|S| + H_{2}K_{2} + H_{1}K_{1}) \quad \text{if } 3|f$$
where $|V| = 3^{r}$, $|G| = f! \cdot |V| \cdot 2$, $S = \frac{|V|!}{(|V| - f)!}$

$$H_{1} = |V| (|V| - 3) \cdots (|V| - (f - 3)) \quad \text{if } 3|f$$

$$K_{1} = \frac{f! (|V| - 1)}{3^{(f/3)} \cdot ((f/3)!)} \quad \text{if } 3|f$$

$$H_{2} = (|V| - 1) (|V| - 2) \cdots (|V|) - (f - 2)) \quad \text{if } f \text{ is odd}$$

$$= (|V| - 1) (|V| - 2) \cdots (|V| - (f - 1)) \quad \text{if } f \text{ is even}$$

$$K_{2} = \frac{f! |V|}{2^{(f/2)} \cdot [f/2]!}$$

where [f/2] denotes the largest integer which is smaller than f/2.

The details of the proof are still somewhat lengthy and have been omitted here.

Table 1 shows the number of equivalence classes for the various values for r and f. Table 2 shows the equivalence classes of C-matrix for the 3^4 factorial, and matrics with the first column containing \underline{O} are presented.

Table 1 The Number of Equivalence Classes of C-Matrix

r	2	3	4	5	6	7	8
	4	8	10	10	8	4	1
3	13	65	364	1,534	5,642	16, 588	41, 470
4	40	560	10,660	158, 548	2,008,448	21, 469, 240	198, 590, 470
5	121	4,961	295, 240	13, 942, 588	553, 057, 604	18, 720, 164, 584	522, 244, 855, 228
6	364	44, 408	8, 038, 030	1, 160, 757, 598	140, 643, 544, 860	43, 578, 166, 217, 508	386, 973, 008, 116, 223

Table 2 Equivalence Classes of C-Matrix For The 34 Factorial

Class 1					
001	001	022	010	010	022
012	021	021	021	012	012
002	002	011	020	020	01 1
021	012	012	012	021	021
Class 2					
012	021	021	021	012	012
001	001	022	010	010	022
021	012	012	012	021	021
002	002	011	020	020	011
Class 3					
001	001	022	010	010	022
010	022	010	001	022	001
002	002	011	020	020	011
020	01 1	020	002	011	002
Class 4					
001	001	022	010	010	022
011	020	002	011	002	020
002	002	011	020	020	011
022	010	001	022	001	010
Class 5					
000	000				

Um: Equ	ivalence	Classes	of	Parallel	Fats	Fraction.
---------	----------	---------	----	----------	------	-----------

012	021
Class 6	
012	021
000	000
Class 7	
012	021
012	021
Class 8	
012	021
021	012

References

- (1) DeBruijn, N.G. (1964) Pólyás theory of counting, Applied Combinatorial Mathematics, Wiley.
- (2) Kerber, A. (1970) Representations of permutation groups, Springer-Verlag
- (3) Anderson, D.A. and Mardekian, J. (1979) Paraller flats factions for the 3ⁿ factorial experiment. The Institute of Mathematical Statistics Bulletin, 8, 223
- (4) Srivastava, J.N. Notes on parallel flats fractions, Unpublished.
- (5) Srivastava, J.N. and Ghosh, S (1977) Balanced 2^m factorial designs of resolution V which allow search and estimation of one extra unknown effect, $4 \le m \le 8$. Communications in Statistics, A6 (2), 141-166

127