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ABSTRACT

A parallel flats faraction for the.3” factorial experiment is symbolically written
as At=C(rXf) where A(rXn) is of rank r. The A-matrix partitions the non-
negligible effects into (3-"—1)/2-1 alias sets. The U: effects in the i-th alias
set are related pairwise by elements from S;, the symmetric group on three
symbols. For each alias set the f flats produce an f<u: alias componet permu-
tation matrices (ACPM) with elements from S; All the the information concering

the relationships among levels of the effects is contained in the ACPM.
1. Introduction

In this paper, a treatment combination or assembly for the 3" experiment
is denoted by nx 1 vector ¢ with elements from {0, 1,2} indicating the levels
of the n factors. A fractorial-factorial design is some collection of N treatment

combinations, denoted by 7. Specifically, the symbol 7T is used to denote

either the set of treatment combinations in the design or the nX N matrix
having columns ¢, 4,,....,¢ In the experiment observations are made at
each treatment combination in 7. The observation correponding to ¢ is denoted
by y:;, and the vector of all N observations is denoted by Nx 1 vector y.

For convenience of notation, let 7'=Dy=[d.d,...d,), so Dy (M referring
to main-effect design matrix) is an Nxn matrix with rows ¢, ¢, ..., x.
For i=1,2,...,n, the column d; of Dy contains the levels for factor F. If
for any { and j an interaction between factor F; and factor F; is to be incl-

uded in the model, the two columns
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d:+d; and d;+2d;, mod(3)
must be adjoined to Dy; and in the usual notation the corresponding intera-
ction effects are denoted by F.F;X, x=#=0e{1,2}.

This procedure is followed for every pair of factors that interact, and D
represents the design matrix that results after all appropriate columns corres-
ponding to interactions have been adjoined to Dy. For example, if all pairs
of factors Interact, there will be 2(;) columns adjoined to Dy to form the
matrix D. The defining vector ¢ for effect F;F;X will have ith component 1,
jth component x, and the remaining zero. In general, the defining vector for
an effect F;%F;%.. . F;,* will have x; in the i; th position and zeros elsewh-
ere.

Since each factor appears at three levels, each main effect symbol, F;
i=1,...,n, denotes two degrees of freedom. Similarly, if factors F; and F;
interact, each of the two symbols F;F;X, x=1 2, denotes two degrees of
freedom, thus accounting for all 22=4 degrees of freedom associated with
the interaction. These single degrees of freedom are defined by the set of

orthogonal contrasts in Table 1.1,

TABLE 1.1. Coefficients of Three Level Orthogonal Contrasts

Level L Q-
0 —1 1
1 0 —2
2 1 1

Using the usual notation, we write the model equations E(y)=XF. The
parameter vector F includes the general mean g along with two single degree
of freedom components for each main effect and four single degree of free-
dom components for each two-factor interaction. The first column of the
design matrix X is a colum with every element one, corresponding to x. The
remainder of X is formed by replacing each element of D by the correspon-
ding row of Table 1.1, Questions of estimability relate to the rank of X and

linear dependencies among the columns of X,
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The regular 37~ fractions of the 3" factorial are solutions mod(3) to

At=C, (. 1)
Where A is an rxn matrix of rank r and ¢ is 7x 1, both over{0, 1,2, } mod
(3) It is an easy task to write the alias sets from Equation(l.1). Geometri-
cally, we may regard the 3" treatment combinations as points in the FEucli-
dean geometry of order n over the field of order 3, denoted by EG(n, 3).
In this interpretation Equation (1.1) represents a linear (n—r)-flat of 377"
points in EG(n, 3).

An alternative to choosing points on a single flat in EG(n, 3) is to consider
the union of points on several flats. Thus consider the flats generated by
equations

Ait=C,, i=1,2,...,f, (1.2)
where A; is rixn of rank r; and ¢; is r;x 1. The design T corresponding to
(1.2) is

T= {]{t:Ait:ci} (1.3)

i=1

The ith flat contains 3*~7/ points, but since the flats may intersect in various
ways the number of points in T as well as the estimability of factorial effe-
cts depend on the A; and C; in a rather complex manner. Consideration of
designs of type (1.3) was motivated by a search for a general series of
minimal or near minimal resolution IV designs for the s* factorial, Anderson
and Thomas (1977, 1979).

A special case of (1.3) is when A,=A4,=...=4;, each of rank r. In this
case the linear flats are parallel, and the fraction contains fXx 3" " treatment
combinations assuming ¢;=5k¢;, i==j=1,2, ..., f. Such a fraction will be termed
a parallel flats fraction. The treatment combinations in a parallel flats fract-

ion will be symbolically expressed by the matrix equation
At=C, where C=[c¢q,¢9,..,¢r].

A 3n parallel flats fraction T consists of assemblies obtained as solutions to

the symbolic matrix equation A¢=C where without loss of generality consider
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A to be in the canonical form

A=[4*;1Ir].
Let R(A) represent the row space of A and let ¢ be the defining vector of
effect E. Suppose ¢/ D R(A). Then there exists a vector v such that v’4A=¢’.
Let T; consist of the 3»~7 assemblies obtained as solutions to At¢=¢;. For each
assembly * in Ti, e't*=v’c;=c*; that is, only the single value ¢*< {0, 1, 2}.

Let X. represent the rows of the X-matrix corresponding to Ti The two
columns of X;. corresponding to the linear and quadratic components of £
are obtained from Table 1,1 depending on ¢*. The rank of the columns of
X;. corresponding to the mean and to the linear and quadratic components of
E is one. This is true for all columns corresponding to any effects with defi-
ning vectors in R(A). The estimate of g4 from 7T; alone is an estimate of a
linear combination involving the mean, linear and quadratic components of
any effects which have defining vectors in R(A). The linear combination
estimated depends on the flat chosen and the effects found in §;. The running
of the treatment combinations in a particular flat confounds the effects found
in the alias set containing the mean which merely means the individual eff-
ects are not separable. This feature is the basis for saying that effects consi-
tute an alias set S,.

The weight of a vector » denoted by w(v), is defined to be the number of
nonzero elements of v. If three-factor and higher-order interactions are supp-
ressed, then all ¢/ R(A4) such that w(e¢) <2 define those effects which are
aliased with the mean. It may happen that §, consists of only pu.

Definition 1. 1. Let ¢’ define the effect E. Effect £ is aliased with the

mean, if and only if,
A4
rank |---- =rank(4)=r.

Let E be an effect that is not aliased with the mean. The defining vector
of E is added to all row vectors in R(A4) to establish the aliasing structure

with respect to E. The resulting row vectors define those effects which are
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aliased with D.

Definition 1,2, Let ¢; and e, be the defining vectors of effect E; and effect

E, and suppose

4

------

The effects are thus partitioned into sets called alias sets.

Aliasing is an equivalence relation. The effects of F are partitioned into
alias sets Sy, Si,...,S, which are determined solely by A. The number of
alias sets not containing the mean is (3*""—1)/2; however, some of these
may by empty. Thus u<(3""7—1)/2 and the numberof effects in §; will be
denoted by u;.

If the ordering defined by F is imposed on the columns of the X-matrix
resulting from a 3" parallel flats fraction T constructed from f flats then

Xlo Xy oo Xu

X=| Xy Xp - Xu

Xro X oo X
where Xi;, i 1,2,...,f ; J={0,1,...u}, represents the partition of the X-
matrix with rows corresponding to the ith flat and columns corresponding
to the effects in the jth alias set. In addition, X, is used to represent the
partition of the X-matrix with rows corresponding to the ith flat and X; is
used to represent the partition of the X-matrix with columns corresponding

to the jth alias set. Therefore,

.........

.........
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It is easy to show that rank (X;)=1, rank(X;;)=2, J=1,2,....,u4, and rank
(X:i)=142u

2. Alias Component Permutation Matrices

The components of F will be ordered so that the first component is and
the next positions will be occupied by the linerar and quadratic components
of effects aliased with the mean. The vector of these effects will be denoted
by F,. The next positions of F will be filled with the linear and quadratic
components of effects in the first alias set and will be denoted by F,. The
remaining positions in F are filled alias sets at a time and denoted by F,,
Fy, ..., Fu. F=(F/F/F,...F’,)’. Therefore, we have y;=X;.F=X;Fy+X;
Fi+XiyFy+...+XuFy, where F; denotes the vector of effects in the jth alias
set, =0, 1,...u

For the ith flat, let S;; and S;;* denote linear and quadratic effects identi-
fied with the jth alias set, j=0, 1,...,u Typically some effects in the jth
alias set will be taken to represent the set and hence that effect will be iden-
tified as S;;. The single degree of freedom effect S;; will always be identified
with. Then for every j we can choose two columns from X;; corresponding
to the effect Si;, j=0,1,...u and the vector 1 corresponding to the effect.
Let these 142u columns form a matrix Z; with the first column 1,

Consider the relation y;=2Z:5;, where S/ =(Sip,Si;,Si11%+,Siu Si?). Then
Si=(Z/Z:)'Z/y;, where S8/ =(S,Si1,54%-..,81Su?), is the vector of estim-
ates of S; for the ith flat. Since y;=X;F, we have 8§;=(Z/Z)"Z':y;=(Z/Z)"!
Z'X;, F=MF, so that the elements of §; are linear combinations of the

elements of F. It is clear that

FO Fl A Fu
ONneé Nonzero row | 0 0 0
. ~- 0 {two nonzero rows i 0

0 ; 0 0 ‘two nonzero rows
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Now consider f flats. For each i the matrix A is of the form (2.1) but
the elements of two nonzero rows are different from each other, i=1,2,...,

f. For every j we have f estimates of §;; identified with the jth alias set,
j:O, l, 2... , U Let

Sll Sli Slu
S % S%y; S21y
Sm o | Sa1 Sy; Sou

L= ?0 , Ly=| 8% |0 Li=| $%i |eees L,=| §%u. |.
- Srg S S, Sru
8§24 8% S2ru

Suppose that Fi'=(E,, E,,...,E,). Then it is clear that

E(Lj):HiFj7 J:1,2,...,U,
two nonzero rows in column F; of M, glz
two nonzero rows in column F; of M, L
where H;= . , F;=
two nonzero rows in column F; of M, gz;
i

Suppose that the effect S;; has been identified as E;, Then in any flat the
levels of each other effect in the alias set are related to the levels of §;; by
one of the permutations in the symmetric group on three symbols {e,(012),

(021), (01), (02), (12)}. For example, suppose the levels are related by (012)

01 —1 1 0 =2
as in the array |2 1| The corresponding X-matrix is 0 —2 1 1| and
120 I 1 —1 1
in estimating S;; we have two linear combinations
1 3
2 0 -1 3 S e
, that is, : a
0 6 —3 —3 b1
0 1 5 2
Therefore, the effect is related to S;; by
_1 3
7 2
1 1
2 2

Let
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3 1 33
n 10 D 2 2 D 2 2
CHe= 0 1 y 012 = ——1 __l 2 = ! 1
2 2 A 2
(2.2)
13 L3
2 2 -1 0 2 2
D(Ol): ‘}— _—I_ s D(OZ): 0 1 , D(IZ): _ 1 _ 1 .
2 2 2 2

Note that every effect in the set F; is related to the effect S;; identified
with the F; by one of {D.,D 12, D21y, Doty Diozsy Deizy}. Suppose that the
effects in the set F; are related to the effect S;; by g,,85..., gu, respectively,
where ¢ &{e, (012), (021), (01), (02), (12)}. =1,2,...,u;. Then E

E;

. |=[Dgy Dg,...Dgu;]

Szij Euj
Ezui

That is, every two nonzero rows is composed of six 2x 2 matrices in (2. 2),

Hence we have

Dg,, Dg; ... Dgyy,
H,= Dé;m Dg:22 - Dg:z,,,
Dgs Dgs, Dg'fu,

where f is the number of flats and u is the number of effects in the jth
alias set.

One important simplification of the above arguments is through the group
of permutations of three symbols {0, 1,2}, H=/{e, (012), (021), (01), (02),
(12)} with the right multiplication.

For each alias set, we have defined matrix H; and the elements of H; are
compose of D., D1z, D021y DorysDegzys @and Dqq. From the H; we make
the matrix P; by replacing Dg by g. This matrix is called the alias compo-
nent permutation matrix (ACPM).

For each alias set, choosing the first element in the set as the identified

effect, it is clear that the elements of the first column of ACPM are e. If
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the first column of C is 0 then the first row of ACPM consists of ¢ or the
elements of {(01), (02), (12)}. In order to make all the elements of the first
row e, postmultiply P; by D;=diag (g7, 8127581, 1), where g;,71 denotes
the inverse of the element in the first row and ith column. Then it can be
shown that all the elements of P; come from the subgroup Ji={e¢, (012),
(021)}.

Example 2. 1. Consider a 3* factorial experiment for which it can be assumed
that all three-and four-factor interaction effects are negligible. It is also ass-
umed that among the (%)=6 possible pairs of two-factor interactions, at
most two are nonzero. The A-matrix for this example will be taken as
A<(1 20 1)
thus there are flats of size nine. The alias sets are
So={y), Si={F, FsFs, FoF 2 F3F}, S,={F,, F\F;, F\F,, F3F},
Sy={F;, F1F,, F\F 2 F,F,}, S,={F,, F\F}? F\F3? FF3?}).

An example of a parallel-flats fraction in 27 runs is given with C=(cycy¢3)
as C:[ 8 (1) é ] By choosing the main effect in each alias set as the
identified effect, the alias component permutation matrices are

F, F,F, F,F* F;F, F, FF, FF, F;F}?

-

.Plzz{ . e (031). (032) } ; .PZ::[ . (032) (031)
e (021) (012) ¢ e (021) (021) (021) |

Fy  F\F, FF® FF, F, F\F? F\F? FF?

&z{i i m%)(&a}; h:{
e (021) e (012)

-

(021) (051) (031)
(012) e (021) |

N S

3. Easymethod to obtain ACPM

Fortunately, it is easy to obtain the ACPM matrices directly from the

equation A¢=C. Consider a single flat corresponding to ¢={(cy, ¢3..-,¢r),

car: 13§ ]=e
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The 377 solutions to this equation are of the form

(emait]
C*A*tl

where #; assumes all possible 3777 possible values. Thus the points on the ith
flat are expressed in terms of .
Let (e, €5, ...,¢s,) be the defining vectors for the effects in an alias set

where again e; corresponds to the defining effect S. Consider the product

t J
c—A*t; J(ey, 9, ..., ¢84,).
From the 3" possible such products choose three for which [ . A*ffl }’1:
— A%
0, 1

, and 2 respectively. Then using thesethree, say #, #; and ?,, compute

to

the product { ¢’ } [e1,e3,.-.,64,). The last u;—1 columns of this matrix will
ty’

involve ¢ and implicitly define the permutation relationship of each element

’

with E, in terms of ¢. Each column will be of the form

tolei 10’6’1‘
t0'€i+1 or Zo,€i+2
to’ei+2 lo,ei’*‘l

If it is of this second form, multiply the column by 2 so it becomes

-

2t e;
21,‘2’5,-—{—1 . The first row of the resultant marix is of the form
2ty e;+2
C*=(0, x5ty €5, 258 €5, .. X0ty €4,)-
and the remaining rows are obtained by adding 1 and 2 respectively. The
corresponding row of the ACPM is obtained from the first row by setting
0—e, 1—(012), and 2-(021).
The following example will illustrate.

Example 3.1, Consider the 3¢ parallel flats in Example 2.1 with A=

[ % é (1) (l) ] The treatment combination on any flat are of the form

4

2
c1—i;1—1,
62—t1—~2t2

where ¢; and ¢, take all values 0,12, The first alias set §; has defining

vectors



Um : ACPM 11

1 0 0 0
01 10
01 0 1
0 0 2 1

and since the first effect depends only on the first component we can select

the three combinations [ 8 (1) g ], Hence

0 0 €1 2 (1) (1) (1) 8 0 €1 2¢cy c1t¢y
1 0 ¢—1 ¢p—1 010 1LI|IF 1 c1+2 2¢,41 ep4c+1 1L
2 0 61—2 6'2—2 0 0 2 1 2 Cl+1 262+2 61+£2+2-1

The second column must be multiplied by 2 get in proper form, hence the
first row is

C*=00 26, 26, ey,
For the parallel-flats fraction with C:[

PI:{‘; . (021) (0312)}.
e (021) (012) e

8 (1) é ] the ACPM is thus
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