• Title/Summary/Keyword: $100{\mu}m$ PDMS

Search Result 33, Processing Time 0.031 seconds

PDMS Nanoslits without Roof Collapse

  • Lee, Jin-Yong;Yun, Young-Keu;Kim, Yoo-Ri;Jo, Kyu-Bong
    • Bulletin of the Korean Chemical Society
    • /
    • v.30 no.8
    • /
    • pp.1793-1797
    • /
    • 2009
  • Soft lithography of polydimethyl-siloxane (PDMS), an elastomeric polymer, has enabled rapid and inexpensive fabrications of microfluidic devices for various biochemical and bioanalytical applications. However, fabrications of nanostructured PDMS components such as nanoslits remain extremely challenging because of deformation of PDMS material. One of the well-known issues is the unwanted contact between the surfaces of PDMS roof and bottom substrate, called ‘roof collapse’. Here we have developed a novel approach for the facile stabilization of PDMS nanoslits in the low height (130 nm)/width (100 $\mu$m) ratio without roof-collapse. Within 130 nm high nanoslits, we demonstrate the confinement of single DNA molecules. We believe that this approach will serve as a key to utilize PDMS as nanoslits for integrated microfluidic devices.

Fabrication and Evaluation of the Flexible and Implantable Micro Electrode (생체 삽입형 유연한 마이크로 전극의 제작 및 평가)

  • Baek Ju-Yeoul;Kwon Gu-Han;Lee Sang-Woon;Lee Ky-Am;Lee Sang-Hoon
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.55 no.2
    • /
    • pp.93-99
    • /
    • 2006
  • In this paper, we fabricated and evaluated polydimethylsiloxane(PDMS)-based flexible and implantable micro electrodes. The electrode patterning was carried out with the photolithography and chemical etching process after e-beam evaporation of 100 ATi and 1000 A Au. The PDMS substrate was treated by oxygen plasma using reactive ion etching(RIE) system to improve the adhesiveness of PDMS and metal layers. The minimum line width of fabricated micro electrode was 20 $\mu$m. After finished patterning, we did packaging with PDMS and then brought up the electrode's part about 40 $\mu$m with gold electroplating. The Hank's balanced salt solution(HBSS) test was carried out for 6 month for endurance of fabricated micro electrode. We carried out in-vivo test for the evaluation of biocompatibility by implanting electrodes under the ICR mouse skin for 42 days.

Flip Chip Process on the Local Stiffness-variant Stretchable Substrate for Stretchable Electronic Packages (신축성 전자패키지용 강성도 국부변환 신축기판에서의 플립칩 공정)

  • Park, Donghyeun;Oh, Tae Sung
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.25 no.4
    • /
    • pp.155-161
    • /
    • 2018
  • A Si chip with the Cu/Au bumps of $100-{\mu}m$ diameter was flip-chip bonded using different anisotropic conductive adhesives (ACAs) onto the local stiffness-variant stretchable substrate consisting of polydimethylsiloxane (PDMS) and flexible printed circuit board (FPCB). The average contact resistances of the flip-chip joints processed with ACAs containing different conductive particles were evaluated and compared. The specimen, which was flip-chip bonded using the ACA with Au-coated polymer balls as conductive particles, exhibited a contact resistance of $43.2m{\Omega}$. The contact resistance of the Si chip, which was flip-chip processed with the ACA containing SnBi solder particles, was measured as $36.2m{\Omega}$, On the contrary, an electric open occurred for the sample bonded using the ACA with Ni particles, which was attributed to the formation of flip-chip joints without any entrapped Ni particles because of the least amount of Ni particles in the ACA.

Feasibility Study for a Lab-chip Development for LAL Test (LAL 시험용 Lab-chip 개발을 위한 타당성 연구)

  • 황상연;최효진;서창우;안유민;김양선;이은규
    • KSBB Journal
    • /
    • v.18 no.5
    • /
    • pp.429-433
    • /
    • 2003
  • LAL (Limulus amebocyte lysate) test to detect and quantity endotoxin is based on gellation reaction between endotoxin and LAL from a blood extract of Limulus polyphemus. The test is labor intensive requiring dedicated personnel, takes relatively long reaction time (approximately 1 hr), requires relatively large volume of samples and reagents, and its end-point detection method is rather subjective. To solve these problems, we attempted to develop a miniaturized LOC (lab-on-a-chip) prototype using PDMS and glass. Using the 62 mm (length) ${\times}$ 18 mm (width) prototype in which 2 mm (width) ${\times}$ 44.34 mm (length) ${\times}$ 100 $\mu\textrm{m}$ (depth) microfluidic channel was provided, we compared the various detection methods of gellation, turbidometric, and chromogenic assays to find the chromogenic method to be the most suitable for small volume assay. In this assay, kinetic point method was more accurate than end point method. We also found the PDMS chip thickness should be minimized to around 2 mm to allow sufficient light transmittance, which necessitated a glass slide bonding for chip rigidity. Through the miniaturization, the test time was reduced from 1 hr to less than 10 minutes, and the sample volume could be reduced from 100 ${\mu}\ell$ to 4.4 ${\mu}\ell$. In sum, this study revealed that the mini LOC could be an alternative for a semi-automated and reliable method for LAL test.

고체상 미량분석법(SPME)을 이용한 GC/FID에서의 BTEX 및 TCE 동시 분석

  • 이재선;장순웅;이시진
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2003.04a
    • /
    • pp.405-408
    • /
    • 2003
  • The soild phase microextraction(SPME)fiber which contains 100${\mu}{\textrm}{m}$ polydimethyl siloxane of a stationary phase was used for the analysis of volatile organic compounds contained in aqueous solution. volatile organic compounds, which were spiked in blank water and extracted by the headspace SPME techique, were analyzed by gas chromatography/flame ionization detector(GC/FID). The optimu condition of SPME fiber is determined that the analytes were extracted for 40min from extracts by using PDAfS100${\mu}{\textrm}{m}$ fiber. This new method could have wide application for the analysis of VOCs in aqueous solution.

  • PDF

Constructing a Three-Dimensional Endothelial Cell Layer in a Circular PDMS Microchannel

  • Choi, Jong Seob;Piao, Yunxian;Kim, Kyung Hoon;Seo, Tae Seok
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.08a
    • /
    • pp.274.2-274.2
    • /
    • 2013
  • We described a simple and efficient fabrication method for generating microfluidic channels with a circular-cross sectional geometry by exploiting the reflow phenomenon of a thick positive photoresist. Initial rectangular shaped positive photoresist micropatterns on a silicon wafer, which were fabricated by a conventional photolithography process, were converted into a half-circular shape by tuning the temperature to around $105^{\circ}C$. Through optimization of the reflow conditions, we could obtain a perfect circular micropattern of the positive photoresist, and control the diameter in a range from 100 to 400 ${\mu}m$. The resultant convex half-circular photoresist was used as a template for fabricating a concave polydimethylsiloxane (PDMS) through a replica molding process, and a circular PDMS microchannel was produced by bonding two half-circular PDMS layers. A variety of channel dimensions and patterns can be easily prepared, including straight, S-curve, X-, Y-, and T-shapes to mimic an in vivo vascular network. To inform an endothelial cell layer, we cultured primary human umbilical vein endothelial cells (HUVECs) inside circular PDMS microchannels, and demonstrated successful cell adhesion, proliferation, and alignment along the channel.

  • PDF

Fabrication of a Thermopneumatic Valveless Micropump with Multi-Stacked PDMS Layers

  • Jeong, Ok-Chan;Jeong, Dae-Jung;Yang, Sang-Sik
    • KIEE International Transactions on Electrophysics and Applications
    • /
    • v.4C no.4
    • /
    • pp.137-141
    • /
    • 2004
  • In this paper, a thermopneumatic PMDS (polydimethlysiloxane) micropump with nozzle/diffuser elements is presented. The micropump is composed of nozzle/diffuser elements as dynamic valves, an actuator consisting of a circular PDMS diaphragm and a Cr/Au heater on a glass substrate. Four PDMS layers are used for fabrication of an actuator chamber, actuator diaphragm by a spin coating process, spacer layer, and nozzle/diffuser by the SU-8 molding process. The radius and thickness of the actuator diaphragm is 2 mm and 30 ${\mu}{\textrm}{m}$, respectively. The length and the conical angle of the nozzle/diffuser elements are 3.5 mm and 20$^{\circ}$, respectively. The actuator diaphragm is driven by the air cavity pressure variation caused by ohmic heating and natural cooling. The flow rate of the micropump in the frequency domain is measured for various duty cycles of the square wave input voltage. When the square wave input voltage of 5 V DC is applied to the heater, the maximum flow rate of the micropump is 44.6 ${mu}ell$/min at 100 Hz with a duty ratio of 80% under the zero pressure difference.

Evaluation of TVOC contribution from Raw materials of PVC wallpaper using the Headspace-SPME-GC/MS (HS-SPME-GC/MS 법을 이용한 PVC벽지 원자재의 TVOC 기여도 평가)

  • Jang, Mi-Ok;Jeong, Tak-Kyo;Jeong, Yung-Rim;Kim, Man-Goo
    • Analytical Science and Technology
    • /
    • v.20 no.6
    • /
    • pp.488-495
    • /
    • 2007
  • A wallpaper having many surfaces in indoor is composed of various raw materials. In this study, TVOC contribution from raw materials of PVC wallpaper was evaluated by using headspace-solid phase microextraction (HS-SPME)-GC/MS. Samples were diluent, resin stabilizer, plasticizer, filler, blowing agent and PVC resin. 9 mL of each sample was put into 22 mL glass vial and they were equilibrated for 1 hour at $100^{\circ}C$. Headspace in vial was absorbed to $75{\mu}m$ Carboxen-PDMS fiber and analyzed by GC/MS. Aromatic compounds like a toluene, ethylbenzene and xylene, ketones compounds like a acetone, methoxyacetone and 2-butanone and alkane compounds like a nonane decane and undecane were identified from raw materials. And alcohol compounds like a ethanol and butanol and aldehydes were detected. TVOC emission of diluent, resin stabilizer, plasticizer, PVC resin, blowing agent and filler were $54.20{\mu}g/g$, $32.88{\mu}g/g$, $0.50{\mu}g/g$, $0.88{\mu}g/g$, $0.22{\mu}g/g$ and $0.11{\mu}g/g$, respectively. Contribution of TVOC emission of diluent, resin stabilizer and PVC resin that were concerned about add ratio were 0.708, 0.129, 0.115, respectively. In conclusion, it's necessary to reduce TVOC emission through improvement of diluent, resin stabilizer and PVC resin. Also, HS-SPME-GC/MS method which was developed in this study will be used for raw materials analysis effectively.

Protein Array Fabricated by Microcontact Printing for Miniaturized Immunoassay

  • Lee Woo-Chang;Lim Sang-Soo;Choi Bum-Kyoo;Choi Jeong-Woo
    • Journal of Microbiology and Biotechnology
    • /
    • v.16 no.8
    • /
    • pp.1216-1221
    • /
    • 2006
  • A protein array was fabricated for a miniaturized immunoassay using microcontact printing ($\mu$CP). A polydimethylsiloxane (PDMS) stamp with a 5 $\mu$m$\times$5 /$\mu$m dimension was molded from a silicon master developed by photolithography. Under optimal fabrication conditions, including the baking, incubation, and exposure time, a silicon master was successfully fabricated with a definite aspect ratio. An antibody fragment was utilized as the ink for the $\mu$CP, and transferred to an Au substrate because of the Au-thiol (-SH) interaction. The immobilization and antibody-antigen interaction were investigated with fluorescence microscopy. When human serum albumin (HSA) was applied to the protein array fabricated with an antibody against HSA, the detection limit was 100 pg/ml of HSA when using a secondary antibody labeled with a fluorescence tag. The fabricated protein array maintained its activity for 14 days.

Flow Rate Changes in the Heterogeneous Rectangular Microchannels with Different Hydrophilicity for the PDMS Bottom Surface (PDMS 표면특성에 따른 비균일계 마이크로채널의 유속 변화)

  • Noh, Soon-Young;Lee, Hyo-Song;Kim, Ki-Ho;Choi, Jae-Ho;Yu, Jae-Keun;Yoon, Soo-Kyung;Rhee, Young-Woo
    • Clean Technology
    • /
    • v.13 no.3
    • /
    • pp.195-200
    • /
    • 2007
  • This study investigated the flow rate changes of the heterogeneous rectangular microchannels which have different hydrophilic property on the bottom surface. The heterogeneous rectangular microchannel has three native PDMS (poly-dimethyl siloxane) surfaces which were patterned by the soft lithography. PDMS bottom surface was treated by the argon plasma and coated by the allyl alcohol (99%). The channel length was 10, 20 and 30 mm and the channel width was 100, 200 and $300\;{\mu}m$, respectively. Several external voltages were applied to make the fluid flow by the electroosmosis in the microchannel. For the same electric field strength and hydrophilicity of the bottom surface, the flow rate is almost same. This result is matched to the theoretical expectation and confirms that the experimental system is reliable. With increasing the channel width, the flow rate increased for the same hydrophilicity of the bottom surface. The flow rate of the microchannel of higher hydrophilicity was larger than that of the microchannel of lower hydrophilicity. This result implies that the hydrophilicity change of the bottom surface could be applied to control the flow rate in the microchannel.

  • PDF