Browse > Article
http://dx.doi.org/10.6117/kmeps.2018.25.4.155

Flip Chip Process on the Local Stiffness-variant Stretchable Substrate for Stretchable Electronic Packages  

Park, Donghyeun (Department of Materials Science and Engineering, Hongik University)
Oh, Tae Sung (Department of Materials Science and Engineering, Hongik University)
Publication Information
Journal of the Microelectronics and Packaging Society / v.25, no.4, 2018 , pp. 155-161 More about this Journal
Abstract
A Si chip with the Cu/Au bumps of $100-{\mu}m$ diameter was flip-chip bonded using different anisotropic conductive adhesives (ACAs) onto the local stiffness-variant stretchable substrate consisting of polydimethylsiloxane (PDMS) and flexible printed circuit board (FPCB). The average contact resistances of the flip-chip joints processed with ACAs containing different conductive particles were evaluated and compared. The specimen, which was flip-chip bonded using the ACA with Au-coated polymer balls as conductive particles, exhibited a contact resistance of $43.2m{\Omega}$. The contact resistance of the Si chip, which was flip-chip processed with the ACA containing SnBi solder particles, was measured as $36.2m{\Omega}$, On the contrary, an electric open occurred for the sample bonded using the ACA with Ni particles, which was attributed to the formation of flip-chip joints without any entrapped Ni particles because of the least amount of Ni particles in the ACA.
Keywords
stretchable packaging; stretchable substrate; PDMS; FPCB; flip chip; contact resistance;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 C. R. Barrett, A. S. Tetelman, and W. D. Nix, "The Principles of Engineering Materials", pp.316-325, Prentice Hall, Inc., Englewood Cliffs (1973).
2 S. Popovics, "Quantitative Deformation Model for Two-phase Composites Including Concrete", Mater. Struct., 20, 171 (1987).   DOI
3 S. Popovics and M. R. A. Erdey, "Estimation of the Modulus of Elasticity of Concrete-like Composite Materials", Mater. Struct., 3, 253 (1970).
4 D. Park, K. S. Han, and T. S. Oh, "Comparison of Flip-Chip Bonding Characteristics on Rigid, Flexible, and Stretchable Substrates: Part II. Flip-Chip Bonding on Compliant Substrates", Mater. Trans., 58(8), 1217 (2017).   DOI
5 D. Park and T. S. Oh, "Comparison of Flip-Chip Bonding Characteristics on Rigid, Flexible, and Stretchable Substrates: Part I. Flip-Chip Bonding on Rigid Substrates", Mater. Trans., 58(8), 1212 (2017).   DOI
6 J. Y. Choi and T. S. Oh, "Contact Resistance Comparison of Flip-Chip Joints Produced with Anisotropic Conductive Adhesive and Nonconductive Adhesive for Smart Textile Applications', Mater. Trans., 56(10), 1711 (2015).   DOI
7 J. Y. Choi and T. S. Oh, "Flip Chip Process on CNT-Ag Composite Pads for Stretchable Electronic Packaging', J. Microelectron. Packag. Soc., 20(4), 17 (2013).   DOI
8 D. Park and T. S. Oh, "Interfacial Adhesion Enhancement Process of Local Stiffness-variant Stretchable Substrates for Stretchable Electronic Packages", submitted to J. Microelectron. Packag. Soc., 25(4) (2018).   DOI
9 H. A. Oh, D. Park, K. S. Hahn, and T. S. Oh, "Elastic Modulus of Locally Stiffness-variant Polydimethylsiloxane Substrates for Stretchable Electronic Packaging Applications", 22(4), 91 (2015).   DOI
10 H. A. Oh, D. Park, S. J. Shin, and T. S. Oh, "Deformation Behavior of Locally Stiffness-variant Stretchable Substrates Consisting of the Island Structure", J. Microelectron. Packag. Soc., 22(4), 117 (2015).   DOI
11 J. Y. Choi, D. W. Park, and T. S. Oh, "Variation of Elastic Stiffness of Polydimethylsiloxane (PDMS) Stretchable Substrates for Wearable Packaging Applications", J. Microelectron. Packag. Soc., 21(4), 125 (2014).   DOI
12 J. Y. Choi and T. S. Oh, "Flip Chip Process on CNT-Ag Composite Pads for Stretchable Electronic Packaging", J. Microelectron. Packag. Soc., 20(4), 17 (2013).   DOI
13 M. Gonzalez, B. Vandervelde, W. Chistianens, Y. Y. Hsu, F. Iker, F. Bossuyt, J. Vanfleteren, O. van der Sluis, and P.H.M. Timmermans, "Thermo-Mechanical Analysis of Flexible and Stretchable Systems", Proc. 11th International Conference of Thermal, Mechanical and Multiphysics Simulation and Experiments in Micro-Electronics and Micro-Systems (Euro-SimE), Berlin, 1, Institute of Electrical and Electronics Engineers (2010).
14 M. Gonzalez, F. Axisa, M. V. Bulcke, D. Brosteaux, B. Vandevelde, and J. Vanfleteren, "Design of Metal Interconnects for Stretchable Electronic Circuits", Microelectron. Reliab., 48, 825 (2008).   DOI
15 J. H. Ahn, H. Lee, and S. H. Choa, "Technology of Flexible Semiconductor/Memory Device", J. Microelectron. Packag. Soc., 20(2), 1 (2013).   DOI
16 J. Xiao, A. Carlson, Z. J. Liu, Y. Huang, H. Jiang, and J. A. Rogers, "Stretchable and Compressible Thin Films of Stiff Materials on Compliant Wavy Substrates", App. Phys. Lett., 93, 013109 (2008).   DOI
17 T. Loher, D. Manessis, R. Heinrich, B. Schmied, J. Vanfleteren, J. DeBaets, A. Ostmann, and H. Reichl, "Stretchable Electronic Systems", Proc. 59th Electronic Components and Technology Conference (ECTC), San Diego, 893, IEEE Components, Packaging and Manufacturing Technology Society (CPMT) (2009).
18 T. Sekitani, Y. Noguchi, K. Hata, T. Fukushima, T. Aida, and T. Someya, "A Rubberlike Stretchable Active Matrix Using Elastic Conductors", Science, 321, 1468 (2008).   DOI
19 D. H. Kim, J. H. Ahn, W. M. Choi, H. S. Kim, T. H. Kim, J. Song, Y. Y. Huang, Z. Liu, C. Lu, and J. A. Rogers, "Stretchable and Foldable Silicon Integrated Circuits", Science, 320, 507 (2008).   DOI
20 T. Sekitani, H. Nakajima, H. Maeda, T. Fukushima, T. Aida, K. Hata, and T. Someya, "Stretchable Active-Matrix Organic Light-Emitting Diode Display Using Printable Elastic Conductors", Nature Mater., 8, 494 (2009).   DOI
21 J. H. Ahn and J. H. Je, "Stretchable Electronics: Materials, Architectures and Integrations", J. Phys. D: Appl. Phys., 45, 102001 (2012).
22 D. H. Kim and J. A. Rogers, "Stretchable Electronics: Materials Strategies and Devices", Adv. Mater., 20, 4887 (2008).   DOI
23 J. Y. Choi, D. H. Park, and T. S. Oh, "Chip Interconnection Process for Smart Fabrics Using Flip-Chip Bonding of SnBi Solder", J. Microelectron. Packag. Soc., 19(3), 71 (2012).   DOI