• 제목/요약/키워드: ${Q_P}^{-1}$

검색결과 2,475건 처리시간 0.031초

On Quasi-Baer and p.q.-Baer Modules

  • Basser, Muhittin;Harmanci, Abdullah
    • Kyungpook Mathematical Journal
    • /
    • 제49권2호
    • /
    • pp.255-263
    • /
    • 2009
  • For an endomorphism ${\alpha}$ of R, in [1], a module $M_R$ is called ${\alpha}$-compatible if, for any $m{\in}M$ and $a{\in}R$, ma = 0 iff $m{\alpha}(a)$ = 0, which are a generalization of ${\alpha}$-reduced modules. We study on the relationship between the quasi-Baerness and p.q.-Baer property of a module MR and those of the polynomial extensions (including formal skew power series, skew Laurent polynomials and skew Laurent series). As a consequence we obtain a generalization of [2] and some results in [9]. In particular, we show: for an ${\alpha}$-compatible module $M_R$ (1) $M_R$ is p.q.-Baer module iff $M[x;{\alpha}]_{R[x;{\alpha}]}$ is p.q.-Baer module. (2) for an automorphism ${\alpha}$ of R, $M_R$ is p.q.-Baer module iff $M[x,x^{-1};{\alpha}]_{R[x,x^{-1};{\alpha}]}$ is p.q.-Baer module.

q-EXTENSIONS OF GENOCCHI NUMBERS

  • CENKCI MEHMET;CAN MUMUN;KURT VELI
    • 대한수학회지
    • /
    • 제43권1호
    • /
    • pp.183-198
    • /
    • 2006
  • In this paper q-extensions of Genocchi numbers are defined and several properties of these numbers are presented. Properties of q-Genocchi numbers and polynomials are used to construct q-extensions of p-adic measures which yield to obtain p-adic interpolation functions for q-Genocchi numbers. As an application, general systems of congruences, including Kummer-type congruences for q-Genocchi numbers are proved.

q진 LCZ 수열군의 일반화된 확장 생성 방법 (Generalized Extending Method for q-ary LCZ Sequence Sets)

  • 정정수;김영식;장지웅;노종선;정하봉
    • 한국통신학회논문지
    • /
    • 제33권11C호
    • /
    • pp.874-879
    • /
    • 2008
  • [1]에서 LCZ 수열군의 2배 확장을 제안하였다. 본 논문에서는 [1]에서의 2배 확장방법을 일반화하는 새로운 확장방법을 제안한다. 이 생성방법을 사용하면 인수가 (N,M,L,${\epsilon}$)인 q진 LCZ 수열군은 인수가 (pN,pM,p[(L+1)/p]-1,p${\epsilon}$)인 q진 LCZ 수열군이 된다. 이 때, p는 소수이고 p는 q의 약수다. 특히 L${\equiv}$p-1modp일 때, 확장된 q진 LCZ 수열군의 인수는 (pN,pM,L,p${\epsilon}$)이 된다.

단층 코어넷 다단입력 인공신경망회로의 처리용량과 사전 무게값 계산에 관한 연구 (The Capacity of Multi-Valued Single Layer CoreNet(Neural Network) and Precalculation of its Weight Values)

  • 박종준
    • 전기전자학회논문지
    • /
    • 제15권4호
    • /
    • pp.354-362
    • /
    • 2011
  • 인공신경망회로에서 아직도 안 풀리는 문제 중 하나는 회로의 처리용량에 관한 것이다. 본 논문은 인공신경망회로의 가장 기본이 되는 하나의 입력과 하나의 출력을 갖은 단층 다단 코어넷을 제안하고 그 처리 용량에 관한 수식을 유도하였다. 제안된 코어넷의 처리 용량으로 p단 입력과 q단 출력을 갖는 코어넷의 처리용량(구현 가능한 함수의 수)은 $a_{p,q}=\frac{1}{2}p(p-1)q^2-\frac{1}{2}(p-2)(3p-1)q+(p-1)(p-2)$ 이며, 입력단 p 값이 짝수이고, 출력단 q가 홀수값이면 추가로 (p-1)(p-2)(q-2)/2 만큼 감해진다. 입력 값으로 3단(level), 출력 값으로 6단을 갖는 1(3)-1(6) 모델을 시뮬레이션하여 분석한 결과, 총 216가지의 함수 조합에서 입력 레벨링 방법으로 cot(x)를 이용하여 82가지의 함수가 구현가능 함을 보였다. 이 모델의 시뮬레이션 결과 80개의 함수가 수렴(구현 가능)하였고, 나머지 수렴되지 않은 함수 중에서 2개의 함수는 무게값 공간에서 무게값 좌표를 미리 계산하여 구현 가능함으로 나와, 총 82개의 구현 가능한 함수가 있음을 보였으며, 이는 위 코어넷 처리용량에 의한 계산 값과 일치하였다.

Multipliers of Bergman Spaces

  • Kwak, Do Young;Kim, Gwang-Hui
    • 충청수학회지
    • /
    • 제1권1호
    • /
    • pp.27-32
    • /
    • 1988
  • In this paper, we study the multipliers of $A^p_q$ into $L^{p^{\prime}}$ when 0 < p' < p. For this purpose, we study the condition on the measure ${\mu}$ satisfying $A^p_q{\subset}A^{p^{\prime}}(d{\mu})$. It turns out that the quotient $k_q={\mu}/v_q$ over hyperbolic ball of radius less than 1 belongs to $L^s_q$, where $\frac{1}{s}+\frac{p^{\prime}}{p}=1$. For the proof, we replace the norm of $k_q$ by the Riemann sum, and then use a result of interpolation theory.

  • PDF

A Nonlinear Elliptic Equation of Emden Fowler Type with Convection Term

  • Mohamed El Hathout;Hikmat El Baghouri;Arij Bouzelmate
    • Kyungpook Mathematical Journal
    • /
    • 제64권1호
    • /
    • pp.113-131
    • /
    • 2024
  • In this paper we give conditions for the existence of, and describe the asymtotic behavior of, radial positive solutions of the nonlinear elliptic equation of Emden-Fowler type with convection term ∆p u + 𝛼|u|q-1u + 𝛽x.∇(|u|q-1u) = 0 for x ∈ ℝN, where p > 2, q > 1, N ≥ 1, 𝛼 > 0, 𝛽 > 0 and ∆p is the p-Laplacian operator. In particular, we determine ${\lim}_{r{\rightarrow}}{\infty}\,r^{\frac{p}{q+1-p}}\,u(r)$ when $\frac{{\alpha}}{{\beta}}$ > N > p and $q\,{\geq}\,{\frac{N(p-1)+p}{N-p}}$.

CRITICAL FUJITA EXPONENT FOR A FAST DIFFUSIVE EQUATION WITH VARIABLE COEFFICIENTS

  • Li, Zhongping;Mu, Chunlai;Du, Wanjuan
    • 대한수학회보
    • /
    • 제50권1호
    • /
    • pp.105-116
    • /
    • 2013
  • In this paper, we consider the positive solution to a Cauchy problem in $\mathbb{B}^N$ of the fast diffusive equation: ${\mid}x{\mid}^mu_t={div}(\mid{\nabla}u{\mid}^{p-2}{\nabla}u)+{\mid}x{\mid}^nu^q$, with nontrivial, nonnegative initial data. Here $\frac{2N+m}{N+m+1}$ < $p$ < 2, $q$ > 1 and 0 < $m{\leq}n$ < $qm+N(q-1)$. We prove that $q_c=p-1{\frac{p+n}{N+m}}$ is the critical Fujita exponent. That is, if 1 < $q{\leq}q_c$, then every positive solution blows up in finite time, but for $q$ > $q_c$, there exist both global and non-global solutions to the problem.

p-ADIC q-HIGHER-ORDER HARDY-TYPE SUMS

  • SIMSEK YILMAZ
    • 대한수학회지
    • /
    • 제43권1호
    • /
    • pp.111-131
    • /
    • 2006
  • The goal of this paper is to define p-adic Hardy sums and p-adic q-higher-order Hardy-type sums. By using these sums and p-adic q-higher-order Dedekind sums, we construct p-adic continuous functions for an odd prime. These functions contain padic q-analogue of higher-order Hardy-type sums. By using an invariant p-adic q-integral on $\mathbb{Z}_p$, we give fundamental properties of these sums. We also establish relations between p-adic Hardy sums, Bernoulli functions, trigonometric functions and Lambert series.

Equivalence-Singularity Dichotomies of Gaussian and Poisson Processes from The Kolmogorov's Zero-One Law

  • Park, Jeong-Soo
    • Journal of the Korean Statistical Society
    • /
    • 제23권2호
    • /
    • pp.367-378
    • /
    • 1994
  • Let P and Q be probability measures of a measurable space $(\Omega, F)$, and ${F_n}_{n \geq 1}$ be a sequence of increasing sub $\sigma$-fields which generates F. For each $n \geq 1$, let $P_n$ and $Q_n$ be the restrictions of P and Q to $F_n$, respectively. Under the assumption that $Q_n \ll P_n$ for every $n \geq 1$, a zero-one condition is derived for P and Q to have the dichotomy, i.e., either $Q \ll P$ or $Q \perp P$. Then using this condition and the Kolmogorov's zero-one law, we give new and simple proofs of the dichotomy theorems for a pair of Gaussian measures and Poisson processes with examples.

  • PDF

SOME RESULTS ON UNIQUENESS OF MEROMORPHIC SOLUTIONS OF DIFFERENCE EQUATIONS

  • Gao, Zong Sheng;Wang, Xiao Ming
    • 대한수학회논문집
    • /
    • 제32권4호
    • /
    • pp.959-970
    • /
    • 2017
  • In this paper, we investigate the transcendental meromorphic solutions with finite order of two different types of difference equations $${\sum\limits_{j=1}^{n}}a_jf(z+c_j)={\frac{P(z,f)}{Q(z,f)}}={\frac{{\sum_{k=0}^{p}}b_kf^k}{{\sum_{l=0}^{q}}d_lf^l}}$$ and $${\prod\limits_{j=1}^{n}}f(z+c_j)={\frac{P(z,f)}{Q(z,f)}={\frac{{\sum_{k=0}^{p}}b_kf^k}{{\sum_{l=0}^{q}}d_lf^l}}$$ that share three distinct values with another meromorphic function. Here $a_j$, $b_k$, $d_l$ are small functions of f and $a_j{\not{\equiv}}(j=1,2,{\ldots},n)$, $b_p{\not{\equiv}}0$, $d_q{\not{\equiv}}0$. $c_j{\neq}0$ are pairwise distinct constants. p, q, n are non-negative integers. P(z, f) and Q(z, f) are two mutually prime polynomials in f.