Let $k$ be a real abelian field and $k_{\infty}$ be its $\mathbb{Z}_p$-extension for an odd prime $p$. Let $A_n$ be the Sylow $p$-subgroup of the ideal class group of $k_n$, the $nth$ layer of the $\mathbb{Z}_p$-extension. By using the main conjecture of Iwasawa theory, we have the following: If $p$ does not divide $\prod_{{{\chi}{\in}\hat{\Delta}_k},{\chi}{\neq}1}B_{1,{\chi}{\omega}^{-1}$, then $A_n$ = {0} for all $n{\geq}0$, where ${\Delta}_k=Gal(k/\mathbb{Q})$ and ${\omega}$ is the Teichm$\ddot{u}$ller character for $p$. The converse of this statement does not hold in general. However, we have the following when $k$ is of prime conductor $q$: Let $q$ be an odd prime different from $p$. and let $k$ be a real subfield of $\mathbb{Q}({\zeta}_q)$. If $p{\mid}{\prod}_{{\chi}{\in}\hat{\Delta}_{k,p},{\chi}{\neq}1}B_{1,{\chi}{\omega}}-1$, then $A_n{\neq}\{0\}$ for all $n{\geq}1$, where ${\Delta}_{k,p}$ is the $Gal(k_{(p)}/\mathbb{Q})$ and $k_{(p)}$ is the decomposition field of $k$ for $p$.
본 논문에서는 2차원 결합 가우시안 Q-함수(Two-dimensional joint Gaussian Q-function)를 이용하여 AWGN(Additive White Gaussian Noise) 환경에서 M-PSK(M-ary Phase Shift Keying) 신호의 I/Q 위상 불균형(Phase unbalance) 존재 시 수치 적분이 필요 없는 정확하고 일반화된 closed-form 형태의 비트 오류율(Bit Error Rate) 표현을 유도한다. 새롭게 유도된 표현은 평균 BER 뿐만 아니라 k-번째 비트의 BER에 대하여도 일반화된 식으로 되어 있어 다양한 환경으로의 적용이 용이하여 M-PSK를 적용하는 많은 디지털 통신 시스템에서 복조 시 발생할 수 있는 I/Q 위상 불균형에 의한 시스템 성능 변화에 대하여 정확한 이론적 성능 기준을 제공할 것으로 기대된다.
We characterize the commutative Artinian rings R every proper quotient ring (respectively every proper ideal) in which is invariant with respect to all derivations.
We prove that for any positive integer $g{\geq}3$, there are ${\gg}q^{\frac{l}{2g}}$ real cyclotomic function fields whose conductor has degree ${\leq}l$ and ideal class number is divisible by $\frac{g}{gcd(2,g)}$.
Let (R, m) be a 2-dimensional regular local ring with algebraically closed residue field R/m. Let K be the quotient field of R and v be a prime divisor of R, i.e., a valuation of K which is birationally dominating R and residually transcendental over R. Zariski showed that there are finitely many simple v-ideals $m=P_0\;{\supset}\;P_1\;{\supset}\;{\cdotS}\;{\supset}\;P_t=P$ and all the other v-ideals are uniquely factored into a product of those simple ones. It then was also shown by Lipman that the predecessor of the smallest simple v-ideal P is either simple (P is free) or the product of two simple v-ideals (P is satellite), that the sequence of v-ideals between the maximal ideal and the smallest simple v-ideal P is saturated, and that the v-value of the maximal ideal is the m-adic order of P. Let m = (x, y) and denote the v-value difference |v(x) - v(y)| by $n_v$. In this paper, if the m-adic order of P is 2, we show that $O(P_i)\;=\;1\;for\;1\;{\leq}\;i\; {\leq}\;{\lceil}\;{\frac{b+1}{2}}{\rceil}\;and\;O(P_i)\;=2\;for\;{\lceil}\;\frac{b+3}{2}\rceil\;{\leq}\;i\;\leq\;t,\;where\;b=n_v$. We also show that $n_w\;=\;n_v$ when w is the prime divisor associated to a simple v-ideal $Q\;{\supset}\;P$ of order 2 and that w(R) = v(R) as well.
Buchmann and Williams[1] proposed a key exchange system making use of the properties of the maximal order of an imaginary quadratic field. $H{\ddot{u}}hnlein$ et al. [6,7] also introduced a cryptosystem with trapdoor decryption in the class group of the non-maximal imaginary quadratic order with prime conductor q. Their common techniques are based on the properties of the invertible ideals of the maximal or non-maximal orders respectively. Kim and Moon [8], however, proposed a key-exchange system and a public-key encryption scheme, based on the class semigroups of imaginary quadratic non-maximal orders. In Kim and Moon[8]'s cryptosystem, a non-invertible ideal is chosen as a generator of key-exchange ststem and their secret key is some characteristic value of the ideal on the basis of Zanardo et al.[9]'s quantity for ideal equivalence. In this paper we propose the methods for finding the non-invertible ideals corresponding to non-primitive quadratic forms and clarify the structure of the class semigroup of non-maximal order as finitely disjoint union of groups with some quantities correctly. And then we correct the misconceptions of Zanardo et al.[9] and analyze Kim and Moon[8]'s cryptosystem.
본 논문은 광원 라인폭이 spectral amplitude coding (SAC) OCDMA 시스템에 미치는 영향을 구하였다. q와 m값에 따라 다양한 코드를 구현할 수 있으므로 symmetric balance incomplete block design(BIBD) 코드를 분석에 사용하였다. 그 결과 입력파워가 큰 경우 ($P_{sr}=-10dBm$) 이상적인 BIBD 코드가 비이상적인 BIBD 코드보다 더 좁은 광원 라인폭이 요구되었다. 그러나 입력파워가 작은 경우 ($P_{sr}=-25dBm$)에는 그 반대로 비이상적인 BIBD 코드가 이상적인 BIBD 코드보다 더 좁은 광원 라인폭이 필요했다.
단위원을 가지는 하환환에 있어서의 Prime Spectrum에 관하여 다음 세가지 사실을 증명하였다. 1. X를 환 R의 prime spectrum, C(X)를 X에서 정의되는 실연적함수의 환, X를 C(X)의 maximal spectrum이라 하면 X는 C(X)의 prime spectrum의 부분공간으로서의 한 T-space로 된다. N을 환 R의 nilradical이라 하면, R/N이 regula 이면 X와 X는 위상동형이다. 2. f: R$\longrightarrow$R'을 ring homomorphism, P를 R의 한 Prime ideal, $R_{p}$, R'$_{p}$를 각각 S=R-P 및 f(S)에 관한 분수환(ring of fraction)이라 하고, k(P)를 local ring $R_{p}$의 residue' field라 할 때, R'의 prime spectrum의 부분공간인 $f^{*-1}$(P)는 k(P)(equation omitted)$_{R}$R'의 prime spectrum과 위상동형이다. 단 f*는 f*(Q)=$f^{-1}$(Q)로서 정의되는 함수 s*:Spec(R')$\longrightarrow$Spec(R)이다. 3. X를 환 S의 prime spectrum, N을 R의 nilradical이라 할 때, 다음 네가지 사실은 동치이다. (1) R/N 은 regular 이다. (2) X는 Zarski topology에 관하여 Hausdorff 공간이다. (3) X에서의 Zarski topology와 constructible topology와는 일치한다. (4) R의 임의의 원소 f에 대하여 f를 포함하지 않는 R의 prime ideal 전체의 집합 $X_{f}$는 Zarski topology에 관하여 개집합인 동시에 폐집합이다.폐집합이다....
We consider the weighted shortest path updating problem, that is, the problem to reconstruct the weighted shortest paths in response to topology change of the network. This appear proposes a distributed algorithms that reconstructs the weighted shortest paths after several processors and links are added and deleted. its message complexity and ideal-time complexity are O(p$^2$+q+n') and O(p$^2$+q+n') respectively, where n' is the number of processors in the network after the topology change, q is the number of added links, and p is the total number of processors in he biconnected components (of the network before the topology change) including the deleted links or added links.
Let (R, m) be a commutative Noetherian local ring and I be an ideal of R. In this paper it is shown that if cd(I, R) = t > 0 and the R-module $Hom_R(R/I,H^t_I(R))$ is finitely generated, then $$t={\sup}\{{\dim}{\widehat{\hat{R}_p}}/Q:p{\in}V(I{\hat{R}}),\;Q{\in}mAss{_{\widehat{\hat{R}_p}}}{\widehat{\hat{R}_p}}\;and\;p{\widehat{\hat{R}_p}}=Rad(I{\wideha{\hat{R}_p}}=Q)\}$$. Moreover, some other results concerning the cohomological dimension of ideals with respect to the rings extension $R{\subset}R[X]$ will be included.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.