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RELATIONS OF IDEALS OF
CERTAIN REAL ABELIAN FIELDS

Jae Moon Kim

Abstract. Let k be a real abelian field and k∞ be its Zp-

extension for an odd prime p. Let An be the Sylow p-subgroup

of the ideal class group of kn, the nth layer of the Zp-extension. By
using the main conjecture of Iwasawa theory, we have the following:

If p does not divide
∏

χ∈∆̂k,χ 6=1
B1,χω−1 , then An = {0} for all

n ≥ 0, where ∆k = Gal(k/Q) and ω is the Teichmüller character
for p.

The converse of this statement does not hold in general. How-

ever, we have the following when k is of prime conductor q: Let q be
an odd prime different from p and let k be a real subfield of Q(ζq).

If p |
∏

χ∈∆̂k,p,χ6=1
B1,χω−1 , then An 6= {0} for all n ≥ 1, where

∆k,p is the Galois group Gal(k(p)/Q) and k(p) is the decomposition

field of k for p.

0. Introduction.

Let k be a number field and k∞ =
⋃

n≥0 kn be a Zp-extension of
k for a prime p. Let An be the Sylow p-subgroup of the ideal class
group of kn and A∞ = lim←−An be the inverse limit of An under the
norm maps. During the past few decades, the growth of #An and the
structure of A∞ have been studied exhaustively after K.Iwasawa. Let
en be the exact power of p of #An. K.Iwasawa([3]) found that there are
integers µ, λ ≥ 0 and ν such that en = µpn +λn+ ν for n� 0. These
constants µ, λ and ν are called the Iwasawa invariants for k∞/k. Later
in 1979, B.Ferrero and L.Washington proved that µ = 0 when k is an
abelian field and k∞ is the cyclotomic Zp-extension of k([1]). Around
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at the same time, R.Greenberg conjectured λ = 0 when k is a totally
real field and gave a number of examples supporting his conjecture in
([2]).

Note that when k is a real abelian field, k admits only one Zp-
extension for each p, namely the cyclotomic Zp-extension since the
Leopoldt’s conjecture holds in this case([10]). Thus when k is a real
abelian field, according to Iwasawa-Ferrero-Washington, en = λn + ν
for n � 0. And if the Greenberg conjecture holds, then en = ν is
independent of n for n � 0 and An capitulates in k∞. The aim of
this paper is to discuss conditions for An = {0}, i.e., λ = ν = 0 when
k is real abelian. In the following theorem a sufficient condition for
λ = ν = 0 is given in terms of Bernoulli numbers.

Theorem 1. Let k be a real abelian field and let ∆k = Gal(k/Q).
If p does not divide

∏
χ∈∆̂k,χ 6=1B1,χω−1 , then An = {0} for all n ≥ 0,

where ω is the Teichmüller character for p.

We will briefly sketch the proof of Theorem 1 in Section 1 by us-
ing the main conjecture of Iwasawa theory which was first proved by
B.Mazur and A.Wiles([8]). The rest of this paper is devoted to a
discussion of the converse of Theorem 1. Namely, we will examine
what happens if p divides

∏
B1,χω−1 . When k = Q(

√
85) and p = 3,

B1,χω−1 = −12 but the class number of k is 2, so A0 = {0}. Thus
the converse of Theorem 1 is not true in general. However, in [5], the
following is proved when [k : Q] = 2 and p splits in k: Let k be a real
quadratic field and p be an odd prime which splits in k. If p divides
B1,χω−1 , then An 6= {0} for n ≥ 1 .

In this paper, we will generalize this to an arbitrary real abelian field
of prime conductor q. The main tools for the generalization are certain
relations of prime ideals of kn above p coming from circular units of
kn. In Section 2, we will briefly review circular units of abelian fields
defined by W.Sinnott([9]) and find relations of prime ideals of kn above
p. Finally, in Section 3, we will prove the following theorem :

Theorem 3. Let q be an odd prime and let k be a real sub-
field of Q(ζq). Let p be an odd prime such that p - [k : Q]. If
p |

∏
χ∈∆̂k,p,χ 6=1B1,χω−1 ,then An 6= {0} for all n ≥ 1.
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1. Proof of theorem 1

Theorem 1. If p does not divide
∏

χ∈∆̂k,χ 6=1B1,χω−1 , then An =
{0} for all n ≥ 0.

Proof. Let L∞ and M∞ be the maximal unramified and p-ramified
abelian p-extensions of k∞ respectively. Let Y = Gal(M∞/k∞), and
let Y1 =

⊕
χ6=1 Y (χ) be the direct sum of the χ-components Y (χ) of

Y for each nontrivial χ ∈ ∆̂k. Then by the main conjecture, Y (χ) is
pseudo-isomorphic to Λ/(fχ), where Λ = Zp[[T ]] and fχ is the power
series in Λ giving rise to the p-adic L-function. Note that

fχ(0) = Lp(0, χ) = −B1,χω−1 .

Let f =
∏

χ∈∆̂k,χ 6=1 fχ. Then Y1 =
⊕

χ6=1 Y (χ) is pseudo-isomorphic
to Λ/(f) and

f(0) =
∏
χ

fχ(0) = ±
∏
χ

B1,χω−1 .

Since p -
∏

χB1,χω−1 by assumption, p - f(0). Therefore f is a unit
in Λ. Hence Y1 is pseudo-isomorphic to Λ/(f) = {0}, i.e., there is a
Λ-module homomorphism Y1 → 0 with a finite kernel. But since each
Y (χ) does not have a finite Λ-submodule (see the appendix of [7]),
Y1 = {0}. Therefore Gal(L∞/k∞), a quotient of Y1, is also trivial.
Since Gal(L∞/k∞) ' lim←−An and since Am → An is surjective for
m > n by class field theory, An is trivial for all n ≥ 0. �

2. Relations of prime ideals above p

Let Pn be the multiplicative subgroup of Q(ζn)× generated by {±1}
and {1− ζa

n|0 < a < n}. Then the group CQ(ζn) of cyclotomic units of
Q(ζn) is defined to be

CQ(ζn) = EQ(ζn) ∩ Pn,

where EQ(ζn) is the unit group of Q(ζn). In general, for an abelian field
F , W.Sinnott defines the group of circular units of F as follows([9]).
For each n > 2, let

Fn = F ∩Q(ζn) and CFn = NQ(ζn)/Fn
(CQ(ζn)).
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Then the group CF of circular units of F is defined to be the multiplica-
tive subgroup of F× generated by CFn together with −1. Note that
if n is prime to the conductor of F , then Fn = Q and so CFn = {1}.
Thus there are only finitely many n’s to be considered in the definition
of CF .

Let k be a real subfield of Q(ζq) for an odd prime q and let k∞ =⋃
n≥0 kn be the Zp-extension of k = k0 for an odd prime p with (p, q) =

1. Here, kn means the nth layer of the Zp-extension, not k ∩ Q(ζn).
For each n ≥ 0, we denote the group of circular units of kn by Cn.
Then the index theorem of W.Sinnott says the following ([9]):

Index Theorem. Let En be the unit group of kn and hn be the
class number of kn. Then [En : Cn] = 2cnhn for some integer cn.

For each integer s ≥ 1, we choose a primitive sth root ζs of 1 so that
ζ

t
s
t = ζs if s|t. Let K = Q(ζq), F = Q(ζp) and K ′ = Q(ζpq). We de-

note their cyclotomic Zp- extensions by K∞, F∞, and K ′
∞. Let σ be

the topological generator of the Galois group Γ = Gal(K ′
∞/K

′) which
maps ζpn to ζ1+p

pn for all n ≥ 1. Restrictions of σ to various subfields
are also denoted by σ. Let k(p) be the decomposition subfield of k for
p and let ∆ = Gal(K/k), ∆̄ = Gal(K/Q), ∆p = Gal(K/k(p)), ∆k =
Gal(k/Q) and ∆k,p = Gal(k(p)/Q). Let [k : Q] = d and [k(p) : Q] = l,
so there are l prime ideals in k above p. Elements of ∆, ∆̄ or ∆p will
be denoted by τ ’s and those of ∆k and ∆k,pby ρ’s. The Frobenius au-
tomorphism of K for p or its restriction to k is denoted by τp. Let R be
the set of all roots of 1 in Zp, i.e., R = {ω ∈ Zp|ωp−1 = 1}. Then R can
be regarded as the Galois group Gal(F/Q) or any Galois group isomor-
phic to it such as Gal(Fn/Qn), where Qn is the subfield of Fn of degree
pn over Q. For m > n, let Gm,n be the Galois group Gal(K ′

m/K
′
n) and

Nm,n be the norm map NK′
m/K′

n
from K ′

m to K ′
n. We will abbreviate

Gm,0 and Nm,0 by Gm and Nm respectively. Gm,n will also mean the
Galois groups Gal(km/kn), Gal(Fm/Fn) and Gal(Qm/Qn). Similarly
Nm,n will have various meanings. Finally we fix a generator ψn of the
character group of Gal(Qn/Q) such that ψn(σ) = ζpn . Then we have
the following cohomology groups of circular units([6]).

Theorem. Suppose p - d = [k : Q]. Then, for m > n ≥ 0, we have
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the followings.

CGm,n
m = Cn,(1)

Ĥ0(Gm,n, Cm) ' (Z/pm−nZ)l−1,(2)

Ĥ−1(Gm,n, Cm) ' (Z/pm−nZ)l.(3)

Fix a prime ideal ℘0 of k(p) above p. We will also think of ℘0 as a
prime ideal of k = k0. Let ∆k,p = {ρ1, · · · , ρl−1, ρl = id}. We denote
the unique prime ideal of kn (or of k(p)Qn) above ℘0 by ℘n. Then
{℘ρi

n | 1 ≤ i ≤ l } is the set of prime ideals of kn above p.
Let C∞ =

⋃
n≥0 Cn and E′∞ =

⋃
n≥0E

′
n, where E′n is the group

of p-units of kn. We know that H1(Γ, C∞) ' (Qp/Zp)l by above the-
orem, where Γ = Gal(k∞/k). On the other hand, H1(Γ, E

′

∞) is a
finite group([4]). Since Qp/Zp cannot have a nontrivial finite quotient,
the induced homomorphism H1(Γ, C∞) → H1(Γ, E

′

∞) is a zero map.
Therefore H1(Gn, Cn) → H1(Gn, E

′
n) is also a zero map for every

n ≥ 1 by the injectivity of the inflation maps on H1.
Let

δ =
∏
ω∈R
τ∈∆p

(ζω
p2 − ζτ

q ) and δi = δρi =
∏
ω∈R
τ∈∆p

(ζω
p2 − ζτρi

q ).

As was shown in [6], N1(δ) = N1(δi) = 1 and {δ1, · · · , δl−1, π
σ−1
1 }

generates H1(G1, C1), where π1 =
∏

ω∈R(ζω
p2 − 1). Therefore, by the

injectivity of H1(G1, C1)→ H1(G1, E
′
1), we have

δ = ασ−1 and δi = δρi = ασ−1
i

for some p-units α in k1 and αi = αρi . That is, as an ideal,

(α) = ℘
∑

1≤i≤l g(ρi)ρ
−1
i

1

for some integers g(ρi). Note that these integers are determined uniquely
modulo p by δ since ℘0 ramifies totally in k1. Then for each k,
1 ≤ k ≤ l − 1, (αk) is factorized as

(αk) = (α)ρk = ℘
∑

1≤i≤l g(ρi)ρ
−1
i ρk

0 = ℘
∑

1≤j≤l g(ρ−1
j ρk)ρj

1 .
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Theorem 2. Let δ = ασ−1 and (α) = ℘
∑

1≤i≤l g(ρi)ρ
−1
i

1 as above.
Let χ be a nontrivial character of ∆k,p and τ(χ) =

∑
1≤a<q χ(a)ζa

q be
the Gauss sum for χ. Then

∑
1≤i≤l

χ(ρi)g(ρi) ≡ −
q

τ(χ)
B1,χω−1 mod (ζp2 − 1).

Proof. For each i, we read the equation δi = ασ−1
i in k1,℘1 , the

completion of k1 at ℘1. Since

(αi) = ℘
∑

1≤j≤l g(ρ−1
j ρi)ρj

1 ,

αi = π
g(ρi)
1 u for some unit u in k1,℘1 . Thus, in Qp(ζp2),

αi = π(p−1)g(ρi)η

for some unit η in Qp(ζp2), where π = ζp2 − 1. Hence

δi = ασ−1
i = π(p−1)g(ρi)(σ−1)ησ−1.

Since
πσ−1 ≡ 1 + πp−1 and ησ−1 ≡ 1 mod πp,

we have

δi ≡ 1 + (p− 1)g(ρi)πp−1 ≡ 1− g(ρi)πp−1 mod πp.

Therefore

logpδi ≡ logp(1− g(ρi)πp−1)

≡ −g(ρi)πp−1 − 1
2
(g(ρi)πp−1)2 − · · · − 1

p
(g(ρi)πp−1)p − · · ·

≡ g(ρi) mod π,
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since πp(p−1)/p ≡ −1 mod π and every other term is congruent to 0
mod π. Hence∑

1≤i≤l

χ(ρi)g(ρi) ≡
∑

1≤i≤l

χ(ρi)logpδi

=
∑

1≤i≤l

χ(ρi)logp(
∏
ω∈R
τ∈∆p

(ζω
p2 − ζτρi

q ))

=
∑
ω∈R

τ∈∆p,1≤i≤l

χ(ρi)logp(ζω
p2 − ζτρi

q )

=
∑
ω∈R
τ∈∆̄

χ(τ)logp(ζω
p2 − ζτ

q )

≡ − q

τ(χ)
B1,χω−1 mod π.

The last congruence comes from a slight modification of Proposition 1
of [5]. �

3. Application to the proof of theorem 3

Let A be the l × l matrix with ith column

Ai = (g(ρ−1
1 ρi), · · · , g(ρ−1

l ρi))t

for 1 ≤ i ≤ l − 1 and the last column Al = (1, · · · , 1)t. It is not hard
to see that (for instance, apply lemma 5.26 of [10])

det A =
∏

χ∈∆̂k,p

χ6=1

∑
1≤i≤l

χ(ρi)g(ρi).

Then we have

det A ≡ ±q
l−1
2

∏
χ∈∆̂k,p

χ6=1

B1,χω−1 mod pZp

by Theorem 2, since
∏

τ τ(χ) = q(l−1)/2. Now we prove Theorem 3.
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Theorem 3. Let q be an odd prime and let k be a real sub-
field of Q(ζq). Let p be an odd prime such that p - [k : Q]. If
p|

∏
χ∈∆̂k,p,χ 6=1B1,χω−1 ,then An 6= {0} for all n ≥ 1.

Proof. Suppose that p|
∏

χ(p)=1,χ 6=1B1,χω−1 . Then det A ≡ 0 mod
p. So there is a nontrivial vector B = (b1, · · · , bl)t such that AB ≡ O
mod p. Consider ξ = δb1

1 · · · δ
bl−1
l−1 π

(σ−1)bl

1 . Then

ξ = (αb1
1 · · ·α

bl−1
l−1 π

bl
1 )σ−1.

Since

(αi) = ℘
∑

1≤j≤l g(ρ−1
j ρi)ρj

1 and (π1) = ℘
∑

1≤j≤l ρj

1 ,

we have

(αb1
1 · · ·α

bl−1
l−1 π

bl
1 ) = ℘

∑
1≤j≤l(

∑
1≤i≤l−1 g(ρ−1

j ρi)bi+bl)ρj

1 .

Note that
∑

1≤i≤l−1 g(ρ
−1
j ρi)bi + bl is the jth entry of AB, which is

congruent to 0 mod p. Hence

(αb1
1 · · ·α

bl−1
l−1 π

bl
1 ) = ℘

p
∑

1≤j≤l cjρj

1 = I0

for some ideal I0 of k0. To finish the proof, we will show that p divides
the class number h1 of k1, which clearly implies that An 6= 0 for n ≥ 1
by class field theory. �

If p divides the class number of k0, there is nothing to prove. Oth-
erwise, there is no nontrivial capitulation from k0 to k1. Thus I0 must
be a principal ideal I0 = (α0) for some α0 in k0. Therefore

αb1
1 · · ·α

bl−1
l−1 π

bl
1 = α0u

for some unit u in k1. Hence

ξ = (αb1
1 · · ·α

bl−1
l−1 π

b1
1 )σ−1 = uσ−1.
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Since B 6≡ (0, · · · , 0)t mod p, ξ is not in Cσ−1
1 . Thus we have a non-

trivial kernel of the homomorphism H1(G1, C1)→ H1(G1, E1), where
E1 is the unit group of k1. From the short exact sequence

0→ C1 → E1 → E1/C1 → 0,

we get a long exact sequence

0→ C0 → E0 → (E1/C1)G1 → H1(G1, C1)→ H1(G1, E1)→ · · · .

Since H1(G1, C1)→ H1(G1, E1) is not injective,

(E1/C1)G1 ⊗ Zp 6= {0}.

Therefore E1/C1⊗Zp 6= {0}. Then by the index theorem of W.Sinnott
in Section 2, we have p|h1 as desired.
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