• Title/Summary/Keyword: ${\mathcal{AN}}$-operator

Search Result 54, Processing Time 0.024 seconds

NORMAL INTERPOLATION ON AX = Y IN ALG$\mathcal{L}$

  • Jo, Young-Soo
    • Honam Mathematical Journal
    • /
    • v.30 no.2
    • /
    • pp.329-334
    • /
    • 2008
  • Given operators X and Y acting on a Hilbert space $\mathcal{H}$, an interpolating operator is a bounded operator A such that AX = Y. In this article, the following is proved: Let $\mathcal{L}$ be a subspace lattice on $\mathcal{H}$ and let X and Y be operators acting on a Hilbert space H. Let P be the projection onto the $\overline{rangeX}$. If PE = EP for each E ${\in}$ $\mathcal{L}$, then the following are equivalent: (1) sup ${{\frac{{\parallel}E^{\perp}Yf{\parallel}}{{\parallel}E^{\perp}Xf{\parallel}}}:f{\in}\mathcal{H},\;E{\in}\mathcal{L}}$ < ${\infty},\;\overline{rangeY}\;{\subset}\;\overline{rangeX}$, and there is a bounded operator T acting on $\mathcal{H}$ such that < Xf, Tg >=< Yf, Xg >, < Tf, Tg >=< Yf, Yg > for all f and gin $\mathcal{H}$ and $T^*h$ = 0 for h ${\in}\;{\overline{rangeX}}^{\perp}$. (2) There is a normal operator A in AlgL such that AX = Y and Ag = 0 for all g in range ${\overline{rangeX}}^{\perp}$.

UNITARY INTERPOLATION ON AX = Y IN ALG$\mathcal{L}$

  • Kang, Joo-Ho
    • Honam Mathematical Journal
    • /
    • v.31 no.3
    • /
    • pp.421-428
    • /
    • 2009
  • Given operators X and Y acting on a Hilbert space $\mathcal{H}$, an interpolating operator is a bounded operator A such that AX = Y. In this paper, we showed the following : Let $\mathcal{L}$ be a subspace lattice acting on a Hilbert space $\mathcal{H}$ and let $X_i$ and $Y_i$ be operators in B($\mathcal{H}$) for i = 1, 2, ${\cdots}$. Let $P_i$ be the projection onto $\overline{rangeX_i}$ for all i = 1, 2, ${\cdots}$. If $P_kE$ = $EP_k$ for some k in $\mathbb{N}$ and all E in $\mathcal{L}$, then the following are equivalent: (1) $sup\;\{{\frac{{\parallel}E^{\perp}({\sum}^n_{i=1}Y_if_i){\parallel}}{{\parallel}E^{\perp}({\sum}^n_{i=1}Y_if_i){\parallel}}:f{\in}H,n{\in}{\mathbb{N}},E{\in}\mathcal{L}}\}$ < ${\infty}$ range $\overline{rangeY_k}\;=\;\overline{rangeX_k}\;=\;\mathcal{H}$, and < $X_kf,\;X_kg$ >=< $Y_kf,\;Y_kg$ > for some k in $\mathbb{N}$ and for all f and g in $\mathcal{H}$. (2) There exists an operator A in Alg$\mathcal{L}$ such that $AX_i$ = $Y_i$ for i = 1, 2, ${\cdots}$ and AA$^*$ = I = A$^*$A.

A NOTE ON k-HYPERREFLEXIVITY OF TOEPLITZ-HARMONIC SUBSPACES

  • Budzynski, Piotr;Piwowarczyk, Kamila;Ptak, Marek
    • Bulletin of the Korean Mathematical Society
    • /
    • v.51 no.6
    • /
    • pp.1727-1733
    • /
    • 2014
  • The 2-hyperreflexivity of Toeplitz-harmonic type subspace generated by an isometry or a quasinormal operator is shown. The k-hyperreflexivity of the tensor product $\mathcal{S}{\otimes}\mathcal{V}$ of a k-hyperreflexive decom-posable subspace $\mathcal{S}$ and an abelian von Neumann algebra $\mathcal{V}$ is established.

MAPS PRESERVING SOME MULTIPLICATIVE STRUCTURES ON STANDARD JORDAN OPERATOR ALGEBRAS

  • Ghorbanipour, Somaye;Hejazian, Shirin
    • Journal of the Korean Mathematical Society
    • /
    • v.54 no.2
    • /
    • pp.563-574
    • /
    • 2017
  • Let $\mathcal{A}$ be a unital real standard Jordan operator algebra acting on a Hilbert space H of dimension at least 2. We show that every bijection ${\phi}$ on $\mathcal{A}$ satisfying ${\phi}(A^2{\circ}B)={\phi}(A)^2{\circ}{\phi}(B)$ is of the form ${\phi}={\varepsilon}{\psi}$ where ${\psi}$ is an automorphism on $\mathcal{A}$ and ${\varepsilon}{\in}\{-1,1\}$. As a consequence if $\mathcal{A}$ is the real algebra of all self-adjoint operators on a Hilbert space H, then there exists a unitary or conjugate unitary operator U on H such that ${\phi}(A)={\varepsilon}UAU^*$ for all $A{\in}\mathcal{A}$.

UNITARY INTERPOLATION ON AX = Y IN A TRIDIAGONAL ALGEBRA ALG𝓛

  • JO, YOUNG SOO;KANG, JOO HO;PARK, DONGWAN
    • Honam Mathematical Journal
    • /
    • v.27 no.4
    • /
    • pp.649-654
    • /
    • 2005
  • Given operators X and Y acting on a separable complex Hilbert space ${\mathcal{H}}$, an interpolating operator is a bounded operator A such that AX = Y. We show the following: Let $Alg{\mathcal{L}}$ be a subspace lattice acting on a separable complex Hilbert space ${\mathcal{H}}$ and let $X=(x_{ij})$ and $Y=(y_{ij})$ be operators acting on ${\mathcal{H}}$. Then the following are equivalent: (1) There exists a unitary operator $A=(a_{ij})$ in $Alg{\mathcal{L}}$ such that AX = Y. (2) There is a bounded sequence {${\alpha}_n$} in ${\mathbb{C}}$ such that ${\mid}{\alpha}_j{\mid}=1$ and $y_{ij}={\alpha}_jx_{ij}$ for $j{\in}{\mathbb{N}}$.

  • PDF

SELF-ADJOINT INTERPOLATION ON AX=Y IN A TRIDIAGONAL ALGEBRA ALG𝓛

  • Kang, Joo Ho;Lee, SangKi
    • Honam Mathematical Journal
    • /
    • v.36 no.1
    • /
    • pp.29-32
    • /
    • 2014
  • Given operators X and Y acting on a separable Hilbert space $\mathcal{H}$, an interpolating operator is a bounded operator A such that AX = Y. In this article, we investigate self-adjoint interpolation problems for operators in a tridiagonal algebra : Let $\mathcal{L}$ be a subspace lattice acting on a separable complex Hilbert space $\mathcal{H}$ and let X = ($x_{ij}$) and Y = ($y_{ij}$) be operators acting on $\mathcal{H}$. Then the following are equivalent: (1) There exists a self-adjoint operator A = ($a_{ij}$) in $Alg{\mathcal{L}}$ such that AX = Y. (2) There is a bounded real sequence {${\alpha}_n$} such that $y_{ij}={\alpha}_ix_{ij}$ for $i,j{\in}\mathbb{N}$.

UNITARY INTERPOLATION ON Ax = y IN A TRIDIAGONAL ALGEBRA ALG𝓛

  • Kang, Joo Ho
    • Honam Mathematical Journal
    • /
    • v.36 no.4
    • /
    • pp.907-911
    • /
    • 2014
  • Given vectors x and y in a separable complex Hilbert space $\mathcal{H}$, an interpolating operator is a bounded operator A such that Ax = y. We show the following: Let $Alg{\mathcal{L}}$ be a tridiagonal algebra on $\mathcal{H}$ and let $x=(x_i)$ and $y=(y_i)$ be vectors in $\mathcal{H}$. Then the following are equivalent: (1) There exists a unitary operator $A=(a_{ij})$ in $Alg{\mathcal{L}}$ such that Ax = y. (2) There is a bounded sequence $\{{\alpha}_i\}$ in $\mathbb{C}$ such that ${\mid}{\alpha}_i{\mid}=1$ and $y_i={\alpha}_ix_i$ for $i{\in}\mathbb{N}$.

COMPACT INTERPOLATION ON AX = Y IN ALG𝓛

  • Kang, Joo Ho
    • Journal of applied mathematics & informatics
    • /
    • v.32 no.3_4
    • /
    • pp.441-446
    • /
    • 2014
  • In this paper the following is proved: Let $\mathcal{L}$ be a subspace lattice on a Hilbert space $\mathcal{H}$ and X and Y be operators acting on $\mathcal{H}$. Then there exists a compact operator A in $Alg\mathcal{L}$ such that AX = Y if and only if ${\sup}\{\frac{{\parallel}E^{\perp}Yf{\parallel}}{{\parallel}E^{\perp}Xf{\parallel}}\;:\;f{\in}\mathcal{H},\;E{\in}\mathcal{L}\}$ = K < ${\infty}$ and Y is compact. Moreover, if the necessary condition holds, then we may choose an operator A such that AX = Y and ${\parallel}A{\parallel}=K$.

GENERALIZED BROWDER, WEYL SPECTRA AND THE POLAROID PROPERTY UNDER COMPACT PERTURBATIONS

  • Duggal, Bhaggy P.;Kim, In Hyoun
    • Journal of the Korean Mathematical Society
    • /
    • v.54 no.1
    • /
    • pp.281-302
    • /
    • 2017
  • For a Banach space operator $A{\in}B(\mathcal{X})$, let ${\sigma}(A)$, ${\sigma}_a(A)$, ${\sigma}_w(A)$ and ${\sigma}_{aw}(A)$ denote, respectively, its spectrum, approximate point spectrum, Weyl spectrum and approximate Weyl spectrum. The operator A is polaroid (resp., left polaroid), if the points $iso{\sigma}(A)$ (resp., $iso{\sigma}_a(A)$) are poles (resp., left poles) of the resolvent of A. Perturbation by compact operators preserves neither SVEP, the single-valued extension property, nor the polaroid or left polaroid properties. Given an $A{\in}B(\mathcal{X})$, we prove that a sufficient condition for: (i) A+K to have SVEP on the complement of ${\sigma}_w(A)$ (resp., ${\sigma}_{aw}(A)$) for every compact operator $K{\in}B(\mathcal{X})$ is that ${\sigma}_w(A)$ (resp., ${\sigma}_{aw}(A)$) has no holes; (ii) A + K to be polaroid (resp., left polaroid) for every compact operator $K{\in}B(\mathcal{X})$ is that iso${\sigma}_w(A)$ = ∅ (resp., $iso{\sigma}_{aw}(A)$ = ∅). It is seen that these conditions are also necessary in the case in which the Banach space $\mathcal{X}$ is a Hilbert space.