• Title/Summary/Keyword: ${\lambda}^*$-open sets

Search Result 6, Processing Time 0.018 seconds

Some Topologies Induced by b-open Sets

  • El-Monsef, M.E. Abd;El-Atik, A.A.;El-Sharkasy, M.M.
    • Kyungpook Mathematical Journal
    • /
    • v.45 no.4
    • /
    • pp.539-547
    • /
    • 2005
  • The class of b-open sets in the sense of $Andrijevi{\acute{c}}$ ([3]), was discussed by El-Atik ([9]) under the name of ${\gamma}-open$ sets. This class is closed under arbitrary union. The aim of this paper is to use ${\Lambda}-sets$ and ${\vee}-sets$ due to Maki ([15]) some topologies are constructed with the concept of b-open sets. $b-{\Lambda}-sets,\;b-{\vee}-sets$ are the basic concepts introduced and investigated. Moreover, several types of near continuous function based on $b-{\Lambda}-sets,\;b-{\vee}-sets$ are constructed and studied.

  • PDF

λ*-CLOSED SETS AND NEW SEPARATION AXIOMS IN ALEXANDROFF SPACES

  • Banerjee, Amar Kumar;Pal, Jagannath
    • Korean Journal of Mathematics
    • /
    • v.26 no.4
    • /
    • pp.709-727
    • /
    • 2018
  • Here we have studied the ideas of $g^*$-closed sets, $g{\bigwedge}_{{\tau}^-}$ sets and ${\lambda}^*$-closed sets and investigate some of their properties in the spaces of A. D. Alexandroff [1]. We have also studied some separation axioms like $T_{\frac{\omega}{4}}$, $T_{\frac{3\omega}{8}}$, $T_{\omega}$ in Alexandroff spaces and also have introduced a new separation axiom namely $T_{\frac{5\omega}{8}}$ axiom in this space.

On a Generalization of Closed Sets

  • Caldas, Miguel;Ganster, Maximilian;Georgiou, Dimitrios N.;Jafari, Saeid;Popa, Valeriu
    • Kyungpook Mathematical Journal
    • /
    • v.47 no.2
    • /
    • pp.155-164
    • /
    • 2007
  • It is the objective of this paper to study further the notion of ${\Lambda}_s$-semi-${\theta}$-closed sets which is defined as the intersection of a ${\theta}$-${\Lambda}_s$-set and a semi-${\theta}$-closed set. Moreover, introduce some low separation axioms using the above notions. Also we present and study the notions of ${\Lambda}_s$-continuous functions, ${\Lambda}_s$-compact spaces and ${\Lambda}_s$-connected spaces.

  • PDF

Standard Penetration Test Performance in Sandy Deposits (모래지반에서 표준관입시험에 따른 관입거동)

  • Dung, N.T.;Chung, Sung-Gyo
    • Journal of the Korean Geotechnical Society
    • /
    • v.29 no.10
    • /
    • pp.39-48
    • /
    • 2013
  • This paper presents an equation to depict the penetration behavior during the standard penetration test (SPT) in sandy deposits. An energy balance approach is considered and the driving mechanism of the SPT sampler is conceptually modeled as that of a miniature open-ended steel pipe pile into sands. The equation consists of three sets of input parameters including hyperbolic parameters (m and ${\lambda}$) which are difficult to determine. An iterative technique is thus applied to determine the optimized values of m and ${\lambda}$ using three measured values from a routine SPT data. It is verified from a well-documented record that the simulated penetration curves are in good agreement with the measured ones. At a given depth, the increase in m results in the decrease in ${\lambda}$ and the increase in the curvature of the penetration curve as well as the simulated N-value. Generally, the predicted penetration curve becomes nearly straight for the portion of exceeding the seating drive zone, which is more pronounced as soil density increases. Thus, the simulation method can be applied to extrapolating a prematurely completed test data, i.e., to determining the N value equivalent to a 30 cm penetration. A simple linear equation is considered for obtaining similar results.

SINGULAR INNER FUNCTIONS OF $L^{1}-TYPE$

  • Izuchi, Keiji;Niwa, Norio
    • Journal of the Korean Mathematical Society
    • /
    • v.36 no.4
    • /
    • pp.787-811
    • /
    • 1999
  • Let M be the maximal ideal space of the Banach algebra $H^{\infty}$ of bounded analytic functions on the open unit disc $\triangle$. For a positive singular measure ${\mu}\;on\;{\partial\triangle},\;let\;{L_{+}}^1(\mu)$ be the set of measures v with $0\;{\leq}\;{\nu}\;{\ll}\;{\mu}\;and\;{{\psi}_{\nu}}$ the associated singular inner functions. Let $R(\mu)\;and\;R_0(\mu)$ be the union sets of $\{$\mid$\psiv$\mid$\;<\;1\}\;and\;\{$\mid${\psi}_{\nu}$\mid$\;<\;0\}\;in\;M\;{\setminus}\;{\triangle},\;{\nu}\;\in\;{L_{+}}^1(\mu)$, respectively. It is proved that if $S(\mu)\;=\;{\partial\triangle}$, where $S(\mu)$ is the closed support set of $\mu$, then $R(\mu)\;=\;R0(\mu)\;=\;M{\setminus}({\triangle}\;{\cup}\;M(L^{\infty}(\partial\triangle)))$ is generated by $H^{\infty}\;and\;\overline{\psi_{\nu}},\;{\nu}\;{\in}\;{L_1}^{+}(\mu)$. It is proved that %d{\theta}(S(\mu))\;=\;0$ if and only if there exists as Blaschke product b with zeros $\{Zn\}_n$ such that $R(\mu)\;{\subset}\;{$\mid$b$\mid$\;<\;1}\;and\;S(\mu)$ coincides with the set of cluster points of $\{Zn\}_n$. While, we proved that $\mu$ is a sum of finitely many point measure such that $R(\mu)\;{\subset}\;\{$\mid${\psi}_{\lambda}$\mid$\;<\;1}\;and\;S(\lambda)\;=\;S(\mu)$. Also it is studied conditions on \mu for which $R(\mu)\;=\;R0(\mu)$.

  • PDF