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Abstract. It is the objective of this paper to study further the notion of Λs-semi-θ-closed
sets which is defined as the intersection of a θ-Λs-set and a semi-θ-closed set. Moreover, we
introduce some low separation axioms using the above notions. Also we present and study
the notions of Λs-continuous functions, Λs-compact spaces and Λs-connected spaces.

1. Introduction

We begin to recall some known notions which will be used in the sequel.

Let (X, τ) be a space and A be a subset of X. We denote the interior and the closure
of a set A by Int(A) and Cl(A), respectively. The subset A of X is said to be semi-open
(see [7]) if there exists an open set U of X such that U ⊂ A ⊂ Cl(U). The complement of
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a semi-open set is called semi-closed set (see [2]). The intersection of all semi-closed sets
containing A is called the semi-closure of A (see [2]) and is denoted by sCl(A). The semi-
θ-closure (see [3]) denoted by sClθ(A), is the set of all x ∈ X such that sCl(O) ∩ S 6= ∅
for every semi-open set O of X containing x. A subset A is called semi-θ-closed (see [3])
if A = sClθ(A). The set {x ∈ X : sCl(O) ⊆ A for some semi-open set O containing
x} is called the semi-θ-interior of A and is denoted by sIntθ(A). A subset A is called
semi-θ-open (see [5]) if A = sIntθ(A). By [6], it is proved that, for a subset A, sClθ(A)
is the intersection of all semi-θ-closed sets each containing A. We denote the collection of
all semi-θ-open (resp. semi-θ-closed) sets by SθO(X, τ) (resp. SθC(X, τ)). The notion of
θ-Λs-set is introduced and investigated by Caldas et al. [1] by utilizing semi-θ-open sets.
These sets suggested a new class of sets which they called Λs-semi-θ-closed sets. They
offered some properties of these sets. Among others, they proved that a topological space
(X, τ) is semi-θ-T0 if and only if every singleton of X is Λs-semi-θ-closed. Recall that a
topological space is semi-θ-T0 [1] if to each pair of points x, y ∈ X and x 6= y, there exists
a semi-θ-open set which contains one of them but not the other.

In what follows (X, τ) and (Y, σ) (or X and Y ) denote topological spaces.

2. Preliminaries

In this section we recall the definitions of ΛΛs
θ [1] and Λ

Λ∗s
θ -sets.

Definition 1 ([1]). Let A be a subset of a topological space X. By ΛΛs
θ (A) we denote

the set ∩{O ∈ SθO(X, τ) | A ⊂ O}. A subset A of a topological space (X, τ) is called a
ΛΛs

θ -set if A = ΛΛs
θ (A).

Lemma 2.1. For subsets A and Ai (i ∈ I) of a space (X, τ), the following hold:

(1) A ⊂ ΛΛs
θ (A).

(2) ΛΛs
θ (ΛΛs

θ (A)) = ΛΛs
θ (A).

(3) If A ⊂ B, then ΛΛs
θ (A) ⊂ ΛΛs

θ (B).

(4) ΛΛs
θ (∩{Ai : i ∈ I}) ⊂ ∩{ΛΛs

θ (Ai) : i ∈ I}.

(5) ΛΛs
θ (∪{Ai : i ∈ I}) = ∪{ΛΛs

θ (Ai) : i ∈ I}.

(6) ΛΛs
θ (A) is a ΛΛs

θ -set.

(7) If A is semi-θ-open, then A is a ΛΛs
θ -set.

(8) If Ai is ΛΛs
θ -set for each i ∈ I, then ∩{Ai : i ∈ I} and ∪{Ai : i ∈ I} are ΛΛs

θ -sets.

Theorem 2.2. Let X be a topological space. We set τΛ
Λs
θ = {A : A is a ΛΛs

θ − set of X}.
The pair (X, τΛ

Λs
θ ) is an Alexandroff space.

Proof. This is an immediate consequence of Lemma 2.1. �

Definition 2. Let A be a subset of a topological space (X, τ). By Λ
Λ∗s
θ (A), we denote

the set ∪{B ∈ SθC(X, τ) | B ⊂ A}. A subset A of a topological space (X, τ) is called a

Λ
Λ∗s
θ -set if A = Λ

Λ∗s
θ (A).

We obtain the following lemma which is similar to Lemma 2.1.
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Lemma 2.3. For subsets A, B and Ai (i ∈ I) of a topological space (X, τ) the following
properties hold:

(1) Λ
Λ∗s
θ (A) ⊆ A.

(2) If A ⊆ B, then Λ
Λ∗s
θ (A) ⊆ Λ

Λ∗s
θ (B).

(3) If A is semi-θ-closed, then Λ
Λ∗s
θ (A) = A.

(4) Λ
Λ∗s
θ (∩{Ai : i ∈ I}) = ∩{ΛΛ∗s

θ (Ai) : i ∈ I}.

(5) ∪{ΛΛ∗s
θ (Ai) : i ∈ I} ⊆ Λ

Λ∗s
θ (∪{Ai : i ∈ I}).

(6) ΛΛs
θ (X −A) = X − Λ

Λ∗s
θ (A) and Λ

Λ∗s
θ (X −A) = X − ΛΛs

θ (A).

(7) Λ
Λ∗s
θ (A) is a Λ

Λ∗s
θ -set.

(8) If A is a semi-θ-closed, then A is a Λ
Λ∗s
θ -set.

(9) If Ai is a Λ
Λ∗s
θ -set for each i ∈ I, then ∪{Ai | i ∈ I} and ∩{Ai | i ∈ I} are Λ

Λ∗s
θ -sets.

Observe that if X is a topological space and τΛ
Λ∗s
θ = {A : A is a Λ

Λ∗s
θ − set of X}, then

(X, τΛ
Λs
θ ) is an Alexandroff space.

3. Λs-semi-θ-closed sets

Definition 3. A subset A of a topological space (X, τ) is called Λs-semi-θ-closed [1],
denoted by (Λ, sθ)-closed, if A = T ∩C, where T is a ΛΛs

θ -set and C is a semi-θ-closed set.

Lemma 3.1 ([1], Lemma 2.23). Let A be a subset of a space (X, τ). Then the following
conditions are equivalent:

(1) A is (Λ, sθ)-closed,

(2) A = P ∩ sClθ(A), where P is a ΛΛs
θ -set,

(3) f A = ΛΛs
θ (A) ∩ sClθ(A).

Example 3.2. Let X = {a, b, c} and τ = {∅, X, {b}, {c}, {b, c}}. The semi-θ-closed sets
of (X, τ) are {∅, X, {a}, {b}, {c}, {a, b}, {a, c}}. The set A = {c} is (Λ, sθ)-closed since it
is semi θ-closed but it is not closed.

Example 3.3. Let X = {a, b, c, } and τ = {∅, X, {a}, {b}, {a, b}, {b, c}}. The set A = {c}
is closed but it is not (Λ, sθ)-closed.

The Example 3.2 and Example 3.3 shown that the sets (Λ, sθ)-closed and closed are
independent of each other.

Note that every semi θ-closed set is (Λ, sθ)-closed, but the converse is not true in
general.

Example 3.4. Let (X, τ) be as in the Example 3.2. Then B = {b, c} is (Λ, sθ)-closed
since it is ΛΛs

θ -set, but it is not semi θ-closed.

Lemma 3.5. If Ai is (Λ, sθ)-closed for each i ∈ I, then ∩{Ai : i ∈ I} is (Λ, sθ)-closed.
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Proof. Suppose that Ai is (Λ, sθ)-closed for each i ∈ I. Then, for each i ∈ I there exist a
ΛΛs

θ -set Ti and a semi-θ-closed set Ci such that Ai = Ti ∩ Ci. Now⋂
{Ai : i ∈ I} =

⋂
{Ti ∩ Ci : i ∈ I}

=
⋂
{Ti : i ∈ I} ∩

⋂
{Ci : i ∈ I}.

By Lemma 2.1,
⋂
{Ti : i ∈ I} is a ΛΛs

θ -set and
⋂
{Ci : i ∈ I} is semi-θ-closed. This shows

that
⋂
{Ai : i ∈ I} is (Λ, sθ)-closed. �

Definition 4. A subset A of a space (X, τ) is said to be (sθ, sθ)-generalized closed if
sClθ(A) ⊆ G holds whenever A ⊆ G and G ∈ SθO(X, τ).

Lemma 3.6. A subset A of a space (X, τ) is (sθ, sθ)-generalized closed if and only if
sClθ(A) ⊆ ΛΛs

θ (A).

Proof. Necessity: Suppose that there is a point xεX such that x /∈ ΛΛs
θ (A). Then, there

exists a subset OεSθO(X, τ) such that A ⊆ O and x /∈ O. This implies that sClθ(A) ⊆ O.
Hence x /∈ sClθ(A) since A is (sθ, sθ)-generalized closed.
Sufficiency: Obvious. �

Theorem 3.7. A subset A of a space (X, τ) is semi-θ-closed if and only if A is (sθ, sθ)-
generalized closed and (Λ, sθ)-closed.

Proof. Necessity: Every semi θ-closed set is both (sθ, sθ)-generalized closed and (Λ, sθ)-
closed.

Sufficiency: Since A is (sθ, sθ)-generalized closed, then by Lemma 3.3, sClθ(A) ⊆
ΛΛs

θ (A). By assumption and Lemma 3.1 A = ΛΛs
θ (A)

⋂
sClθ(A) = sClθ(A). i.e., A is

semi-θ-closed. �

Definition 5. A subset A of a topological space (X, τ) is called (Λ, sθ)-open if X \ A is
(Λ, sθ)-closed.

Theorem 3.8. The union of any family of (Λ, sθ)-open sets is a (Λ, sθ)-open set.

Proof. The proof of this theorem follows by the fact that the intersection of a family of
(Λ, sθ)-closed sets is (Λ, sθ)-closed. �

Lemma 3.9. The following statements are equivalent for a subset A of a topological space
X:

(1) A is (Λ, sθ)-open

(2) A = T ∪ C, where T is a Λ
Λ∗s
θ -set and C is a semi-θ-open set.

Proof. The proof of this lemma is clear. �

Lemma 3.10. Every Λ
Λ∗s
θ -set is (Λ, sθ)-open.

Proof. Take A = A ∪ ∅, where A is a Λ
Λ∗s
θ -set, X is semi-θ-closed and ∅ = X \X. �

Definition 6. A subset A of a topological space X is called a ΛΛs
θ -D set if there are two

(Λ, sθ)-open sets U and V in X such that U 6= X and A = U − V .

It is true that every (Λ, sθ)-open set U different from X is a ΛΛs
θ -D set if A = U and

V = ∅.
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Example 3.11. Let (X, τ) be a space as in the Example 3.2. Then the sets {c} and
{a, c} are (Λ, sθ)-closed sets since they are ΛΛs

θ -sets. Thus the sets {a, b} and {b} are
(Λ, sθ)-open sets. So the set A = {a} = {a, b} − {b} is ΛΛs

θ -D set which is not open and
(Λ, sθ)-open set.

Definition 7. A topological space (X, τ) is called:

(i) ΛΛs
θ -D0 if for any distinct pair of points x and y of X there exists a ΛΛs

θ -D set of
X containing x but not y or a ΛΛs

θ -D set of X containing y but not x.

(ii) ΛΛs
θ -D1 if for any distinct pair of points x and y of X there exist a ΛΛs

θ -D set of X
containing x but not y and a ΛΛs

θ -D set of X containing y but not x.

(iii) ΛΛs
θ -D2 if for any distinct pair of points x and y of X there exist disjoint ΛΛs

θ -D
sets G and E of X containing x and y, respectively.

A topological space (X, τ) satisfies the (Λ, sθ)-property if for any distinct pair of points
in X, there is a (Λ, sθ)-open set containing one of the points but not the other.

Remark 3.12.

(i) If (X, τ) satisfies the (Λ, sθ)-property, then it is ΛΛs
θ -D0.

(ii) If (X, τ) is ΛΛs
θ -Di , then it is ΛΛs

θ -Di−1 , where i = 1, 2.

Theorem 3.13. For a topological space (X, τ), the following statements are true:

(1) (X, τ) is ΛΛs
θ -D0 if and only if it satisfies the (Λ, sθ)-property.

(2) (X, τ) is ΛΛs
θ -D1 if and only if it is ΛΛs

θ -D2.

Proof. The sufficiency for (1) and (2) follows from the above Remark 3.5.
Necessity condition for (1). Let (X, τ) be ΛΛs

θ -D0 so that for any distinct pair of points x
and y of X at least one belongs to a ΛΛs

θ -D set O. Therefore we choose x ∈ O and y /∈ O.
Suppose O = U − V for which U 6= X and U and V are (Λ, sθ)-open sets in X. This
implies that x ∈ U . For the case that y /∈ O we have (i) y /∈ U , (ii) y ∈ U and y ∈ V . For
(i), the space X satisfies the (Λ, sθ)-property since x ∈ U and y /∈ U . For (ii), the space X
also satisfies the (Λ, sθ)-property since y ∈ V but x /∈ V .
Necessity condition for (2). Suppose that X is ΛΛs

θ -D1. It follows from the definition
that for any distinct points x and y in X there exist ΛΛs

θ -D sets G and E such that G
containing x but not y and E containing y but not x. Let G = U − V and E = W −D,
where U, V, W and D are (Λ, sθ)-open sets in X. By the fact that x /∈ E, we have two
cases, i.e. either x /∈ W or both W and D contain x. If x /∈ W , then from y /∈ G either
(i) y /∈ U or (ii) y ∈ U and y ∈ V . If (i) is the case, then it follows from x ∈ U − V that
x ∈ U − (V ∪W ), and also it follows from y ∈ W −D that y ∈ W − (U ∪D). Thus we
have U − (V ∪W ) and W − (U ∪D) which are disjoint. If (ii) is the case, it follows that
x ∈ U − V , y ∈ V and (U − V )∩ V = ∅. If x ∈ W and x ∈ D, we have y ∈ W −D, x ∈ D
and (W −D) ∩D = ∅. This shows that X is ΛΛs

θ -D2. �

Definition 8. Let (X, τ) be a topological space. A point x ∈ X which has only X as the
(Λ, sθ)-neighborhood is called a ΛΛs

θ -neat point.

Theorem 3.14. For a topological space (X, τ) that satisfies the (Λ, sθ)-property the fol-
lowing are equivalent:

(1) (X, τ) is ΛΛs
θ -D1;
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(2) (X, τ) has no ΛΛs
θ -neat point.

Proof. (1) → (2). Since (X, τ) is ΛΛs
θ -D1, so each point x of X is contained in a ΛΛs

θ -D
set O = U −V and thus in U . By definition U 6= X. This implies that x is not a ΛΛs

θ -neat
point.
(2) → (1). Since X satisfies the (Λ, sθ)-property, then for each distinct pair of points x, y ∈
X, at least one of them, choose x for example has a (Λ, sθ)-neighborhood U containing x
and not y. Thus U which is different from X is a ΛΛs

θ -D set. If X has no ΛΛs
θ -neat point,

then y is not a ΛΛs
θ -neat point. This means that there exists a (Λ, sθ)-neighborhood V of

y such that V 6= X. Thus y ∈ (V − U) but not x and V − U is a ΛΛs
θ -D set. Hence X is

ΛΛs
θ -D1. �

Remark 3.15. It is clear that a topological space (X, τ) that satisfies the (Λ, sθ)-property
is not ΛΛs

θ -D1 if and only if there is a unique ΛΛs
θ -neat point in X. It is unique because

if x and y are both ΛΛs
θ -neat point in X, then at least one of them say x has a (Λ, sθ)-

neighborhood U containing x but not y. But this is a contradiction since U 6= X.

Definition 9. Let (X, τ) be a topological space and A ⊆ X. A point x ∈ X is called
(Λ, sθ)-cluster point of A if for every (Λ, sθ)-open set U of X containing x we have A∩U 6=
∅. The set of all (Λ, sθ)-cluster points is called the (Λ, sθ)-closure of A and is denoted by
A(Λ,sθ).

Lemma 3.16. Let A and B be subsets of a topological space (X, τ). For the (Λ, sθ)-closure,
the following properties hold.

(1) A ⊂ A(Λ,sθ).

(2) A(Λ,sθ) = ∩{F | A ⊂ F and F is (Λ, sθ)− closed}.
(3) If A ⊂ B, then A(Λ,sθ) ⊂ B(Λ,sθ).

(4) A is (Λ, sθ)-closed if and only if A = A(Λ,sθ).

(5) A(Λ,sθ) is (Λ, sθ)-closed.

Proof. Straightforward. �

Definition 10. A topological space (X, τ) is called a (Λ, sθ)-symmetric if for x and y in
X, x ∈ {y}(Λ,sθ) implies y ∈ {x}(Λ,sθ).

In what follows the set {x}(Λ,sθ) is denoted by x(Λ,sθ) for every x ∈ X.

Theorem 3.17. A topological space (X, τ) is (Λ, sθ)-symmetric if and only if for x ∈ X,
x(Λ,sθ) ⊆ E whenever x ∈ E and E is (Λ, sθ)-open in (X, τ).

Proof. Assume that x ∈ y(Λ,sθ) but y /∈ x(Λ,sθ). This means that the complement of x(Λ,sθ)

contains y. Therefore the set {y} is a subset of the complement of x(Λ,sθ). This implies that
y(Λ,sθ) is a subset of the complement of x(Λ,sθ). Now the complement of x(Λ,sθ) contains
x which is a contradiction.

Conversely, suppose that {x} ⊂ E and E is (Λ, sθ)-open in (X, τ) but x(Λ,sθ) is not
a subset of E. This means that x(Λ,sθ) and the complement of E are not disjoint. Let y
belongs to their intersection. Now we have x ∈ y(Λ,sθ) which is a subset of the complement
of E and x /∈ E. But this is a contradiction. �

Theorem 3.18. For a (Λ, sθ)-symmetric topological space (X, τ), the following are equiv-
alent:
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(1) (X, τ) satisfies the (Λ, sθ)-property;

(2) (X, τ) is ΛΛs
θ -D0;

(3) (X, τ) is ΛΛs
θ -D1.

Proof. (1) ↔ (2) : Lemma 3.10.
(3) → (2) : Remark 3.12.
(1) → (3) : Let x 6= y and by (1), we may assume that x ∈ E ⊂ {y}c for some E (Λ, sθ)-
open in (X, τ). Then x /∈ y(Λ,sθ) and hence y /∈ x(Λ,sθ) . Hence there exists a (Λ, sθ)-open
set F such that y ∈ F ⊂ {x}c. Since every (Λ, sθ)-open set is a ΛΛs

θ -D set, we have that
(X, τ) is a ΛΛs

θ -D1 space. �

4. (Λ, sθ)-continuous functions

Definition 11. Let (X, τ) and (Y, σ) be two topological spaces. A function f : (X, τ) →
(Y, σ) is called (Λ, sθ)-continuous at a point x ∈ X if for every (Λ, sθ)-open set V of Y
such that f(x) ∈ V there exists a (Λ, sθ)-open set U of X such that x ∈ U and f(U) ⊆ V .

The function f is called (Λ, sθ)-continuous if f is (Λ, sθ)-continuous at every point
x ∈ X.

Definition 12. Let (X, τ) be a topological space, x ∈ X and {xs, s ∈ S} be a net of
X. We say that the net {xs, s ∈ S} (Λ, sθ)-converges to x if for every (Λ, sθ)-open set U
containing x there exists an element s0 ∈ S such that s ≥ s0 implies xs ∈ U .

Theorem 4.1. Let (X, τ) be a topological space and A ⊆ X. A point x ∈ A(Λ,sθ) if and
only if there exists a net {xs, s ∈ S} of A which (Λ, sθ)-converges to x.

Proof. The existence of such a net clearly implies that x ∈ A(Λ,sθ). Suppose x ∈ A(Λ,sθ)

and let us denote by U the set of all (Λ, sθ)-open subsets U of X such that x ∈ U directed
by the relation ⊆, i.e., let us define that U1 ≤ U2 if U2 ⊆ U1. The net {xU , U ∈ U}, where
xU is an arbitrary point of A ∩ U , (Λ, sθ)-converges to x. �

Theorem 4.2. For a function f : (X, τ) → (Y, σ), the following are equivalent:

(1) f is (Λ, sθ)-continuous;

(2) f−1(V ) is (Λ, sθ)-open in (X, τ) for every (Λ, sθ)-open set V of (Y, σ);

(3) f−1(F ) is (Λ, sθ)-closed in (X, τ) for every (Λ, sθ)-closed set F of (Y, σ);

(4) f(A(Λ,sθ)) ⊂ [f(A)](Λ,sθ) for each subset A of X;

(5) [f−1(B)](Λ,sθ) ⊂ f−1(B(Λ,sθ)) for each subset B of Y ;

(6) For every x ∈ X and every net {xs, s ∈ S} of X which (Λ, sθ)-converges to x in X,
the net {f(xs), s ∈ S} (Λ, sθ)-converges to f(x) in Y .

Proof. (1) → (2): Let V be any (Λ, sθ)-open set of (Y, σ) and x ∈ f−1(V ). Since f is
(Λ, sθ)-continuous, there exists a (Λ, sθ)-open set Ux containing x such that f(Ux) ⊂ V .
Therefore, we have x ∈ Ux ⊂ f−1(V ) and hence f−1(V ) = ∪{Ux | x ∈ f−1(V )}. By
Theorem 3.8, f−1(V ) is (Λ, sθ)-open in (X, τ).
(2) → (1): This is obvious.
(2) ↔ (3): This is obvious from Definition 5.
(3) → (4): Let A be any subset of X. Since A ⊂ f−1([f(A)](Λ,sθ)), by Lemma 3.15 we
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have A(Λ,sθ) ⊂ f−1([f(A)](Λ,sθ)) and hence f(A(Λ,sθ)) ⊂ [f(A)](Λ,sθ).
(4)→ (5): Let B be any subset of Y . By (4) we have f([f−1(B)](Λ,sθ)) ⊂ [f(f−1(B))](Λ,sθ) ⊂
B(Λ,sθ) and hence [f−1(B)](Λ,sθ) ⊂ f−1(B(Λ,sθ)).
(5) → (3): Let F be any (Λ, sθ)-closed set in (Y, σ). By Lemma 3.15, [f−1(F )](Λ,sθ) ⊂
f−1(F (Λ,sθ)) =f−1(F ) and [f−1(F )](Λ,sθ) ⊂ f−1(F ). Therefore, we obtain [f−1(F )](Λ,sθ)

= f−1(F ). This shows that f−1(F ) is (Λ, sθ)-closed in (X, τ).
(1) → (6): Let x ∈ X and {xs | s ∈ S} be a net (Λ, sθ)-converging to x. For any (Λ, sθ)-
open set of (Y, σ) containing f(x), by (1) there exists a (Λ, sθ)-open set U of X containing
x such that f(U) ⊂ V . Since {xs | s ∈ S} converges to x, there exists s0 ∈ S such that
s ≥ s0 implies xs ∈ U . Therefore, f(xs) ∈ V for any s ≥ s0 and the net {f(xs) | s ∈ S}
(Λ, sθ)-converges to f(x).
(6) → (1): Let us suppose that there exists a point x ∈ X and a (Λ, sθ)-open neigh-
bourhood V of f(x) such that for every (Λ, sθ)-open set U of X containing x such that
f(U) 6⊆ V . Then for every (Λ, sθ)-open set U of X such that x ∈ U , we choose an element
xU ∈ U such that f(xU ) 6∈ V . Let U be the set of all (Λ, sθ)-open sets U of X containing x
and is directed by the relation ⊆ i.e., let us define that U1 ≤ U2 if U2 ⊆ U1. Easily, the net
{xU , U ∈ U} (Λ, sθ)-converges to x but the net {f(xU ), U ∈ U} does not (Λ, sθ)-converge
to f(x) which is a contradiction. Thus there exists a (Λ, sθ)-open set U of X such that
x ∈ U and f(U) ⊆ V . �

Remark 4.3. We recall that a function f : (X, τ) → (Y, σ) is said to be quasi irresolute
[4] if f−1(V ) is semi-θ-open in (X, τ) for each semi-θ-open set V of (Y, σ).

Clearly, if a function f : (X, τ) → (Y, σ) is quasi irresolute, then f : (X, τΛ
Λ∗s
θ ) →

(Y, σΛ
Λ∗s
θ ) is continuous.

Indeed let V be any Λ
Λ∗s
θ -set of (Y, σ). Then V = Λ

Λ∗s
θ (V ) = ∪{W | V ⊃ W ∈

SθC(Y, σ)}. Since f is quasi irresolute, we have f−1(V ) = ∪{f−1(W ) | f−1(V ) ⊃
f−1(W ) ∈ SθC(X, τ)} ⊂ ∪{U | f−1(V ) ⊃ U ∈ SθC(X, τ)} = Λ

Λ∗s
θ (f−1(V )). By Lemma

2.3, we have f−1(V ) ⊃ Λ
Λ∗s
θ (f−1(V )) and hence f−1(V ) is a Λ

Λ∗s
θ -set of (X, τ).

Observe that if a function f : (X, τ) → (Y, σ) is quasi irresolute, then f : (X, τΛ
Λs
θ ) →

(Y, σΛ
Λs
θ ) is continuous.

Theorem 4.4. If f : (X, τ) → (Y, σ) is a quasi irresolute function, then it is (Λ, sθ)-
continuous.

Proof. Let F be a (Λ, sθ)-closed set of (Y, σ). Then there exist a ΛΛs
θ -set T and a semi-θ-

closed set C such that F = T ∩C. Since f is quasi irresolute f−1(T ) is a ΛΛs
θ -set of (X, τ)

and f−1(C) is semi-θ-closed. Therefore, f−1(F ) = f−1(T ) ∩ f−1(C) is (Λ, sθ)-closed in
(X, τ). By Theorem 4.2, f is (Λ, sθ)-continuous. �

Example 4.5. Let X = {a, b, c} and τ = {∅, X, {b}, {c}, {b, c}} and σ = {∅, X, {a}, {b}, {a,
b}, {b, c}}. The semi-θ-closed sets of (X, τ) are {∅, X, {a}, {b}, {c}, {a, b}, {a, c}}, the
(Λ, sθ)-closed sets of (X, τ) are {∅, X, {a}, {b}, {c}, {a, b}, {a, c}, {b, c}} and the semi-θ-
closed sets of (X, σ) are {∅, X, {a}, {b, c}}. Let f : (X, τ) → (Y, σ) be the identity func-
tion. Then f is (Λ, sθ)-continuous but it is not quasi-irresolute since f−1({b, c}) is not
semi θ-closed in (X, τ).
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5. (Λ, sθ)-compactness and (Λ, sθ)-connectedness

Definition 13. A topological space (X, τ) is called (Λ, sθ)-compact (resp. semi-θ-
compact) if every cover of X by (Λ, sθ)-open (resp. semi-θ-open) sets has a finite subcover.

Theorem 5.1. A topological space (X, τ) is (Λ, sθ)-compact (resp. semi-θ-compact) if
and only if for every family {Ai : i ∈ I} of (Λ, sθ)-closed (resp. semi-θ-closed) sets
in X satisfying ∩{Ai : i ∈ I} = ∅, there is a finite subfamily Ai1 , · · · , Ain with
∩{Aik : k = 1, · · · , n} = ∅.
Proof. Straightforward. �

Theorem 5.2. For a topological space (X, τ), the following hold:

(1) If (X, τΛ
Λs
θ ) is compact, then (X, τ) is semi-θ-compact.

(2) If (X, τ) is (Λ, sθ)-compact, then (X, τ) is semi-θ-compact.

(3) If (X, τ) is (Λ, sθ)-compact, then (X, τΛ
Λ∗s
θ ) is compact.

Proof. (1) This follows from Lemma 2.1.
(2) This follows from Theorem 5.1 and of the fact that every semi-θ-closed set is (Λ, sθ)-
closed.
(3) This follows from Lemma 3.10. �

Theorem 5.3. If f : (X, τ) → (Y, σ) is a (Λ, sθ)-continuous surjection and (X, τ) is a
(Λ, sθ)-compact space, then (Y, σ) is (Λ, sθ)-compact.

Proof. Let {Vi | i ∈ I} be any cover of Y by (Λ, sθ)-open sets of (Y, σ). Since f is
(Λ, sθ)-continuous, by Theorem 4.2 {f−1(Vi | i ∈ I} is a cover of X by (Λ, sθ)-open sets
of (X, τ). By (Λ, sθ)-compactness of (X, τ), there exists a finite subset I0 of I such that
X = ∪{f−1(Vi) | i ∈ I0}. Since f is surjective, we obtain Y = f(X) = ∪i∈I0Vi. This
shows that (Y, σ) is (Λ, sθ)-compact. �

Corollary 5.4. The (Λ, sθ)-compactness is preserved by quasi irresolute surjections.

Proof. This is an immediate consequence of Theorem 5.3 and Theorem 4.4. �

Definition 14. A topological space (X, τ) is called (Λ, sθ)-connected if X cannot be
written as a disjoint union of two non-empty (Λ, sθ)-open sets.

Theorem 5.5. For a topological space (X, τ), the following statements are equivalent:

(1) The space X is (Λ, sθ)-connected;

(2) The only subsets of X, which are both (Λ, sθ)-open and (Λ, sθ)-closed are the empty
set ∅ and X.

Proof. Straightforward. �

Open problems.

(1) Does there exist a space (X, τ) which is semi-θ-compact but the space (X, τΛ
Λs
θ ) is

not compact?

(2) Does there exist a space (X, τ) which is semi-θ-compact but the space (X, τ) is not
(Λ, sθ)-compact?
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(3) Does there exist a space (X, τ) such that the space (X, τΛ
Λ∗s
θ ) is compact but the

space (X, τ) is not (Λ, sθ)-compact?

Acknowledgment. Part of this research was carried out while M.Caldas was visiting
the Institute of Mathematics of the Universidad Autónoma de México under the TWAS-
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