• Title/Summary/Keyword: ${\hat}It{o}$ formula

Search Result 6, Processing Time 0.023 seconds

An It${\hat{o}}$ formula for generalized functionals for fractional Brownian sheet with arbitrary Hurst parameter

  • Kim, Yoon-Tae;Jeon, Jong-Woo
    • Proceedings of the Korean Statistical Society Conference
    • /
    • 2005.05a
    • /
    • pp.173-178
    • /
    • 2005
  • We derive an It${\hat{o}}$ formula for generalized functionals for the fractional Brownian sheet with arbitrary Hurst parameter ${H_1},\;H_2$ ${\epsilon}$ (0,1). As an application, we consider a stochastic integral representation for the local time of the fractional Brownian sheet.

  • PDF

STOCHASTIC CALCULUS FOR ANALOGUE OF WIENER PROCESS

  • Im, Man-Kyu;Kim, Jae-Hee
    • The Pure and Applied Mathematics
    • /
    • v.14 no.4
    • /
    • pp.335-354
    • /
    • 2007
  • In this paper, we define an analogue of generalized Wiener measure and investigate its basic properties. We define (${\hat}It{o}$ type) stochastic integrals with respect to the generalized Wiener process and prove the ${\hat}It{o}$ formula. The existence and uniqueness of the solution of stochastic differential equation associated with the generalized Wiener process is proved. Finally, we generalize the linear filtering theory of Kalman-Bucy to the case of a generalized Wiener process.

  • PDF

GIRSANOV THEOREM FOR GAUSSIAN PROCESS WITH INDEPENDENT INCREMENTS

  • Im, Man Kyu;Ji, Un Cig;Kim, Jae Hee
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.19 no.4
    • /
    • pp.383-391
    • /
    • 2006
  • A characterization of Gaussian process with independent increments in terms of the support of covariance operator is established. We investigate the Girsanov formula for a Gaussian process with independent increments.

  • PDF

UNIFORM Lp-CONTINUITY OF THE SOLUTION OF STOCHASTIC DIFFERENTIAL EQUATIONS

  • Kim, Young-Ho
    • Journal of applied mathematics & informatics
    • /
    • v.31 no.3_4
    • /
    • pp.491-498
    • /
    • 2013
  • This note is concerned with the uniform $L^p$-continuity of solution for the stochastic differential equations under Lipschitz condition and linear growth condition. Furthermore, uniform $L^p$-continuity of the solution for the stochastic functional differential equation is given.

A NOTE FOR RESTRICTED INFORMATION MARKETS

  • Jianqi, Yang;Qingxian, Xiao;Haifeng, Yan
    • Journal of applied mathematics & informatics
    • /
    • v.27 no.5_6
    • /
    • pp.1073-1086
    • /
    • 2009
  • This paper considers the problems of martingale measures and risk-minimizing hedging strategies in the market with restricted information. By constructing a general restricted information market model, the explicit relation of arbitrage and the minimal martingale measure between two different information markets are discussed. Also a link among all equivalent martingale measures under restricted information market is given. As an example of restricted information markets, this paper constitutes a jump-diffusion process model and presents a risk minimizing problem under different information. Through $It\hat{o}$ formula and projection results in Schweizer[13], the explicit optimal strategy for different market information are given.

  • PDF