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GIRSANOV THEOREM FOR GAUSSIAN PROCESS
WITH INDEPENDENT INCREMENTS

Man Kyu Im*, Un Cig Ji **, and Jae Hee Kim ***

Abstract. A characterization of Gaussian process with indepen-
dent increments in terms of the support of covariance operator is
established. We investigate the Girsanov formula for a Gaussian
process with independent increments.

1. Introduction

Since the stochastic calculus for standard Brownian motion initiated
by K. Itô, the stochastic calculi for several stochastic processes have been
extensively developed with wide applications to physics, mathematical
finance, engineering, biology etc, in [2, 4, 5, 9, 10, 11, 12] and the ref-
erences cited therein. Recently, the stochastic calculus for Gaussian
processes have been developed in [1, 3, 6, 7].

The main purpose of this paper is two folds. We first establish a char-
acterization of Gaussian process with independent increments in terms
of the support of covariance operator. Secondly, we study the Girsanov
theorem for a Gaussian process with independent increments. We study
a Gaussian process with its characterization and representation. Then
we study stochastic calculus for the Gaussian process, and we investigate
the Girsanov formula for the Gaussian process. As applications of the
Girsanov theorem, the studies of financial model and nonlinear filtering
problems for the Gaussian process are now in progress, see [3, 6, 8, 9, 10].

This paper is organized as follows: In Section 2 we study a character-
ization of a Gaussian process with independent increments. In Section
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3 we recall the stochastic integral and Itô formula for the Gaussian pro-
cess. In Section 4 we establish the Girsanov theorem for the Gaussian
process.

2. Gaussian process with independent increments

Let H = L2(R+, dt) and K a strictly positive selfadjoint operator
with domain D ⊂ H containing all indicator functions, where R+ =
[0,∞). Let (Ω,F , P ) be a complete probability space and let B =
{BK,t}t≥0 be a Gaussian process with mean E[BK,t] = α(t) and co-
variance function

(2.1) E[(BK,t − α(t))(BK,s − α(s))] = 〈K1[0,t],1[0,s]〉, s, t ≥ 0,

where α is of bounded variation on closed intervals with α(0) = 0.

Theorem 2.1. For any 0 ≤ s ≤ t, supp(K1[s,t]) ⊂ [s, t] if and only if
the Gaussian process {BK,t}t≥0 has independent increments.

Proof. If supp(Kf) ⊂ supp(f) for any f ∈ D, then by (2.1) we have

E[(BK,t −BK,s)(BK,v −BK,u)](2.2)
= E[(BK,t −BK,s)]E[(BK,v −BK,u)], 0 ≤ s ≤ t ≤ u ≤ v.

Hence {BK,t}t≥0 has independent increments. Conversely, if {BK,t}t≥0

has independent increments, then (2.2) holds and so 〈K1[s,t],1[u,v]〉 = 0
for 0 ≤ s ≤ t ≤ u ≤ v. The rest of the proof is straightforward.

Theorem 2.2. Let T > 0 and K a positive selfadjoint bounded oper-
ator on L2([0, T ]) such that supp(Kf) ⊂ supp(f) for any f ∈ L2([0, T ]).
Then there exists a strictly increasing absolutely continuous function β
on [0, T ] for any T > 0 such that the multiplication operator Mβ′ = K,
where β′(t) = dβ(t)/dt for 0 ≤ t < T .

Proof. Let β(t) = 〈K1[0,t],1[0,t]〉 for 0 ≤ t ≤ T . Then β(t) is a strictly
increasing function, in fact, for any 0 = t0 < t1 < · · · < tn ≤ T we have

β(ti)− β(ti−1) = 〈K1[0,ti],1[0,ti]〉 − 〈K1[0,ti−1],1[0,ti−1]〉

=
∫ ti

ti−1

K1[ti−1,ti](u)du.

Therefore, β is absolutely continuous on [0, T ]. Since M1AK = KM1A

for any measurable set A ⊂ [0, T ], KMf = MfK for any bounded
measurable function f . On the other hand, the algebra of all multipli-
cation operators of bounded measurable functions is maximal abelian
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and so K = Mg for some g ∈ L∞([0, T ]). Therefore we have β(t) =
〈Mg1[0,t],1[0,t]〉 =

∫ t
0 g(s)ds which implies that g = β′.

From now on, we assume that supp(K1[s,t]) ⊂ [s, t] for any 0 ≤ s ≤ t
and put β(t) = 〈K1[0,t],1[0,t]〉 for t ≥ 0, and {BK,t}t≥0 has a continuous
version.

For each t ≥ 0 we put AK,t = BK,t − α(t). Then {AK,t}t≥0 is a
Gaussian process such that AK,t has the normal distribution with mean
0 and variance β(t).

3. Stochastic integral and Itô formula

Let {BK,t}t≥0 be a Gaussian process. For each t ≥ 0, let Bt be
the σ–algebra generated by {BK,s : 0 ≤ s ≤ t} and then we write
BK,t = (BK,t,Bt) for t ≥ 0.

Definition 3.1. Let T > 0 and MG = MG[0, T ] the class of functions
f : [0, T ]× Ω −→ R such that

(i) the map (t, ω) 7→ f(t, ω) is B([0, T ])×F–measurable,
(ii) for each 0 ≤ t ≤ T , f(t, ·) is Bt–measurable,

(iii) E
[∫ T

0
f(t, ω)2d (β(t) + |α|(t))

]
< ∞.

A function φ ∈ MG is called an elementary function if it has the
form:

(3.1) φ(t, ω) =
∑

j

ej(ω)1[tj ,tj+1)(t),

where ej is Btj -measurable. For the elementary function φ given as in
(3.1), we define

(3.2)
∫ T

0
φ(t, ω)dBK,t(ω) =

∑

j

ej(ω)
(
BK,tj+1 −BK,tj

)
.

The integral defined as in (3.2) is called the stochastic integral of φ with
respect to the Gaussian process {BK,t}t≥0. We first note that if f ∈ MG,
we can choose elementary functions φn ∈ MG such that

(3.3) E
[∫ T

0
|f − φn|2d(β + |α|)(t)

]
−→ 0 as n →∞,
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for the proof, we refer to [6]. Therefore, for each f ∈ MG, the stochastic
integral with respect to the process {BK,t}t≥0 is defined by

∫ T

0
f(t, ω)dBK,t(ω) = lim

n→∞

∫ T

0
φn(t, ω)dBK,t(ω),

where {φn} is a sequence of elementary functions in MG given as in
(3.3) and the limit exists in L2(Ω). Then we can prove the following
elementary inequality: for any f ∈ MG we have

E

[(∫ T

0
f(t, ω)dBK,t(ω)

)2
]

≤ 2E
[∫ T

0
f(t, ω)2dβ(t)

]
+ 2V T

0 (α)E
[∫ T

0
f(t, ω)2d|α|(t)

]
,

where V T
0 (α) is the total variation of α over [0, T ], see [6].

A diffusion process for a Gaussian process {BK,t}t≥0 is a stochastic
process Xt given by

dXt = u(t, ω)dt + v(t, ω)dBK,t, t ≥ 0,

where v ∈ MG[0, T ] and u is Bt-adapted with E
[∫ T

0 u(s, ω)2ds
]

< ∞.

Theorem 3.2 ([6]). Let Xt be a diffusion process given by

dXt = udt + vdBK,t.

Let g ∈ C2(R+ × R). Then Yt = g(t, Xt) is again a diffusion process
and satisfies the following stochastic differential equation:

dYt =
∂g

∂t
(t,Xt)dt +

∂g

∂x
(t,Xt)dXt +

1
2

∂2g(t,Xt)
∂x2

(dXt)
2 ,

where (dXt)2 = (dXt)(dXt) is computed according to the rules:

dt · dt = dt · dBK,t = dBK,t · dt = 0, dBK,t · dBK,t = β(t).

4. The Girsanov theorem

In this section we study the Girsanov Theorem for a Gaussian process
with independent increments. We start with a theorem for the existence
and uniqueness of (strong) solution of a stochastic differential equation.
For the proof, we refer to [6].
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Theorem 4.1. Let T > 0 and b(·, ·) : [0, T ] × R → R, σ(·, ·) :
[0, T ]×R → R be measurable functions satisfying

|b(t, x)|+ |σ(t, x)| ≤ C(t)(1 + |x|), x ∈ R, t ∈ [0, T ];

|b(t, x)− b(t, y)|+ |σ(t, x)− σ(t, y)| ≤ C(t)|x− y|, x, y ∈ R, t ∈ [0, T ]
for some bounded measurable function C. Let Z be a random variable
which is independent of the σ-algebra B∞ generated by {BK,s : s ≥ 0}
and such that E[|Z|2] < ∞. Then the stochastic differential equation

dXt = b(t,Xt)dt + σ(t,Xt)dBK,t, X0 = Z, 0 ≤ t ≤ T

has a unique t-continuous solution Xt with the property that Xt is
adapted to the filtration BZ

t generated by Z and Bt and

E
[∫ T

0
|Xt|2 d(ρ + β + |α|)(t)

]
< ∞,

where ρ is the identity function on R+.

Theorem 4.2. Let {Xt}t≥0 be a continuous stochastic process on the
probability space (Ω,F , P ). Then the following are equivalent:

(i) {Xt}t≥0 is a Gaussian process with independent increments, and
mean 0 and variance β(t).

(ii) {Xt}t≥0 is a martingale with respect to the filtration {Bt}t≥0 of
which the quadratic variation on [0, t] is β(t).

Proof. The proof of (i) ⇒ (ii) is straightforward. To prove the con-
verse we assume that (ii) is satisfied. The proof is a simple modification
of the proof of Theorem 6.1 in [5]. For each t ≥ 0, we put Zt = eiuXt ,
u ∈ R. Then by applying Itô formula (see Theorem 5.1 in [5]) we obtain
that

(4.1) Zt = Zs +
∫ t

s
iuZvdXv − u2

2

∫ t

s
Zvdβ(v), 0 < s ≤ t.

On the other hand, it is obvious that

E
[∫ t

s
iuZvdXv|Bs

]
= 0 P − a.s.

From (4.1) for each A ∈ Bs we have

E[eiu(Xt−Xs)1A] = P (A)− u2

2

∫ t

s
E[eiu(Xv−Xs)1A]dβ(v)

which implies that

E[eiu(Xt−Xs)1A] = P (A) exp{−u2

2
(β(t)− β(s))}, A ∈ Bs.
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Hence we prove that for 0 ≤ s < t

E[exp{iu(Xt −Xs)}|Bs] = exp{−u2

2
(β(t)− β(s))} P − a.s.

We conclude that Xt −Xs is independent of Bs and that normally dis-
tributed with mean 0 and variance β(t)− β(s).

Lemma 4.3 ([10]). Let µ and ν be two probability measures on a
measurable space (Ω,F) such that dν(ω) = Z(ω)dµ(ω) for some Z ∈
L1(Ω, µ). Let X be a random variable on (Ω,F) such that

Eν [|X|] =
∫

Ω
|X(ω)|Z(ω)dµ(ω) < ∞.

Let H be a σ-algebra with H ⊂ F . Then

Eν [X|H] ·Eµ[Z|H] = Eµ[ZX|H] P − a.s.

From now on, we assume that the mean function α of the Gaussian
process {BK,t}t≥0 is absolutely continuous.

Theorem 4.4. Let {Yt}0≤t≤T be a diffusion process of the form:

dYt = v(t)dt + dBK,t, 0 ≤ t ≤ T, Y0 = 0

for a Bt-adapted process {v(t)}0≤t≤T , where T ≤ ∞ is a given constant
and {BK,t}t≥0 is a Gaussian process with mean function α(t) and the
variance function β(t). Assume that

(4.2) E

[
exp

(
1
2

∫ T

0

(v(s) + α′(s))2

β′(s)
ds

)]
< ∞,

where E = EP is the expectation with respect to P . Put

(4.3) Mt = exp
(
−

∫ t

0

v(s) + α′(s)
β′(s)

dAK,s − 1
2

∫ t

0

(v(s) + α′(s))2

β′(s)
ds

)

for 0 ≤ t ≤ T , where dAK,t = dBK,t − α′(t)dt. Then {Yt}0≤t≤T is a
Gaussian process on (Ω,BT , Q) with mean 0 and variance β(t), where
the probability measure Q is defined by

(4.4) dQ(ω) = MT (ω)dP (ω).

In fact, Q(Ω) = EP [MT ] = 1 since {Mt}0≤t≤T is a martingale.
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Proof. For the proof we use similar arguments used in the proof of
Theorem 8.6.3 in [10]. For each 0 ≤ t ≤ T we put Kt = MtYt. Then by
using Itô formula we have

dKt = MtdYt + YtdMt + dYtdMt

= Mt

[
1− Yt

(
v(t) + α′(t)

β′(t)

)]
dAK,t.

Therefore, Kt is a martingale with respect to P and so, by Lemma 4.3,
for 0 ≤ s < t ≤ T we have

EQ[Yt|Bs] =
E[MtYt|Bs]
E[Mt|Bs]

=
E[Kt|Bs]

Ms
=

Ks

Ms
= Ys

which implies that {Yt}0≤t≤T is a martingale with respect to the prob-
ability Q. Therefore, EQ[Yt] = EQ[Y0] = 0 for any 0 ≤ t ≤ T . On the
other hand, since the process {Yt}t≥0 has independent increments, by
applying Itô formula we have

E
[
Y 2

t

]
= 2E

[∫ t

0
YsdYs + β(t)

]
= β(t), 0 ≤ t ≤ T.

Therefore, {Yt}0≤t≤T is a martingale with respect to the filtration {Bt}
and the probability measure Q of which the quadratic variation on [0, t]
is β(t). Hence by Theorem 4.2, {Yt}0≤t≤T is a Gaussian process on
(Ω,BT , Q) with mean 0 and variance β(t).

Remark 4.5. Note that (4.2) is a sufficient condition to be that
{Mt} is a martingale and so, in general, Theorem 4.4 is true with the
assumption that {Mt} is a martingale.

Theorem 4.6. Let {Yt}0≤t≤T be a diffusion process of the form:

(4.5) dYt = u(t)dt + θ(t)dBK,t, 0 ≤ t ≤ T

for a Bt-adapted process {u(t)}0≤t≤T . Suppose there exist processes
{v(t)}0≤t≤T ∈ MG and {η(t)}0≤t≤T ∈ MG such that

(4.6) θ(t)v(t) = u(t)− η(t), 0 ≤ t ≤ T.

Assume that (4.2) holds. Let Q be the measure defined as in (4.4). Then

(4.7) B̃K,t =
∫ t

0
v(s)ds + BK,t, 0 ≤ t ≤ T

is a Gaussian process on (Ω,BT , Q) with mean 0 and variance β(t), and
the process {Yt}0≤t≤T has the following stochastic integral representa-
tion:

dYt = η(t)dt + θ(t)dB̃K,t, 0 ≤ t ≤ T.
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Proof. It is obvious from Theorem 4.4 that {B̃K,t}0≤t≤T is a Gaussian
process on (Ω,BT , Q) with mean 0 and variance β(t). On the other hand,
by (4.5), (4.7) and (4.6) we have

dYt = u(t)dt + θ(t)(dB̃K,t − v(t)dt) = η(t)dt + θ(t)dB̃K,t.

Hence we complete the proof.

Theorem 4.7. Let {Xt}0≤t≤T and {Yt}0≤t≤T be diffusion processes
of the forms:

dXt = b(Xt)dt + σ(Xt)dBK,t,

dYt = [γ(t) + b(Yt)]dt + σ(Yt)dBK,t, 0 ≤ t ≤ T, X0 = Y0 = x ∈ R,

where the functions b and σ satisfy the conditions of Theorem 4.1 and
γ(t) ∈ MG. Suppose there exists a stochastic process {v(t)}0≤t≤T such
that

σ(Yt)
(
v(t) + α′(t)

)
= γ(t), 0 ≤ t ≤ T.

Assume that (4.2) holds. Then the process {Yt}0≤t≤T has the following
stochastic integral representation:

(4.8) dYt = b(Yt)dt + σ(Yt)
(
dB̃K,t + dα(t)

)
, 0 ≤ t ≤ T,

where {B̃K,t}0≤t≤T is given as in (4.7).

Proof. By applying Theorem 4.6 to the case θ(t) = σ(Yt), u(t) =
γ(t) + b(Yt) and η(t) = b(Yt) + σ(Yt)α′(t), we have the representation
(4.8).

Remark 4.8. Let {Xt}0≤t≤T and {Yt}0≤t≤T be the diffusion pro-
cesses given as in Theorem 4.7, and Q a probability measure defined as
in (4.4). For each 0 ≤ t ≤ T , put

B′
K,t = α(t) + B̃K,t

for the Gaussian process {B̃K,t} given as in (4.7). Then {B′
K,t} is a

Gaussian process on (Ω,BT , Q) with mean α(t) and variance β(t), and
(4.8) becomes dYt = b(Yt)dt + σ(Yt)dB′

K,t, 0 ≤ t ≤ T . Therefore, by the
uniqueness of a solution of a stochastic differential equation in Theorem
4.1, the Q-law of {Yt}0≤t≤T is the same as the P -law of {Xt}0≤t≤T .
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