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UNIFORM Lp-CONTINUITY OF THE SOLUTION OF

STOCHASTIC DIFFERENTIAL EQUATIONS†
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Abstract. This note is concerned with the uniform Lp-continuity of so-
lution for the stochastic differential equations under Lipschitz condition

and linear growth condition. Furthermore, uniform Lp-continuity of the
solution for the stochastic functional differential equation is given.
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1. Introduction

In the past few decades, stochastic models have received a great deal of re-
search attention since they have been successfully used in variety of application
fields, including biology, epidemiology, mechanics, economics and finance (see
[1, 3, 4, 5, 11, 14, 15] and references therein for details). Stochastic differential
equation(SDEs) is the most fundamental concept in modern stochastic models.
Consequently, there is an increasing interest in stochastic differential equations.
For instance, in 2006, Henderson et al. [4] published the Stochastic Differential
Equations in Science and Engineering, in 2007, Mao [9] published the stochastic
differential equations and applications, in 2007, Li and Fu [8] considered the sta-
bility analysis of stochastic functional differential equations with infinite delay
and its application to recurrent neural networks.

On the one hand, Mao [9] introduced the following d-dimensional stochastic
differential equations of Itô type:

dx(t) = f(x(t), t)dt+ g(x(t), t)dB(t) (1)

on t0 ≤ t ≤ T, and he showed that there exists a unique solution x(t) to equation
(1) and the solution belongs to M2([t0, T ];R

d) under the Lipschitz condition (2)
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and linear growth condition hold (3); For any x, y ∈ Rd and t ∈ [t0, T ], it follows
that

|f(x, t)− f(y, t)|2 ∨ |g(x, t)− g(y, t)|2 ≤ K|x− y|2. (2)

For any t ∈ [t0, T ] and x ∈ Rd it follows that

|f(x, t)|2 ∨ |g(x, t)|2 ≤ K(1 + |x|2). (3)

Since then, the theory of existence and uniqueness of the solution for SDEs has
been developed by researchers (see [1, 3, 5, 8, 13, 15]). Moreover, the classical and
powerful techniques applied in the study of the existence and uniqueness of the
solution for SDEs. Furthermore, in the study of the solution for the SDEs, one
question arises naturally: Does the uniform Lp-continuity assure the solution for
such SDEs? To the best of our knowledge, there are few results on this problem.
It is also worth noting that the uniform Lp-continuity of the solution for such
SDEs has not been fully investigated, which remains an interesting research
topic.

We aim to establish a new result on uniform Lp-continuity of the solution
for such SDEs. The coefficients in the system are assumed to satisfy Lipschitz
condition and weakened linear growth condition. By some novel technique, some
easily verifiable conditions are obtained which ensure the uniform Lp-continuity
of the solution for such SDEs.

2. Preliminary and notations

Let | · | denote Euclidean norm in Rn. If A is a vector or a matrix, its
transpose is denoted by AT ; if A is a matrix, its trace norm is represented by
|A| =

√
trace(ATA). Let t0 be a positive constant and (Ω,F , P ), throughout this

paper unless otherwise specified, be a complete probability space with a filtration
{Ft}t≥t0 satisfying the usual conditions (i.e. it is right continuous and Ft0 con-
tains all P -null sets). Assume that B(t) is an m-dimensional Brownian motion
defined on complete probability space, that is B(t) = (B1(t), B2(t), ..., Bm(t))T .
We consider the d-dimensional stochastic differential equation of Itô type

dx(t) = f(x(t), t)dt+ g(x(t), t)dB(t) on t0 ≤ t ≤ T (4)

with initial value x(t0) = x0, where f : Rd × [t0, T ] −→ Rd, g : Rd × [t0, T ] −→
Rd×m be both Borel measurable. By the definition of stochastic differential, this
equation is equivalent to the following stochastic integral equation:

x(t) = x0 +

∫ t

t0

f(x(s), s)ds+

∫ t

t0

g(x(s), s)dB(s) on t0 ≤ t ≤ T.

To be more precise, we give the definition of the solution of the equation (4)
with initial data.

Definition 2.1. An Rd-valued stochastic process {x(t)}t0≤t≤T is called a solu-
tion of equation (4) if it the following properties:
(i) {x(t)} is continuous and Ft-adapted;
(ii) {f(x(t), t)} ∈ L1([t0, T ];R

d) and {g(x(t), t)} ∈ L2([t0, T ];R
d×m);
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(iii) equation (6) holds for every t ∈ [t0, T ]with probability 1.
A solution {x(t)} is said to be unique if any other solution {x̄(t)}is indistinguish-
able from {x(t)}, that is

P{x(t) = x̄ for all t0 ≤ t ≤ T} = 1.

�
In order to obtain our main result, we need following assumptions.
Assumption 1. Both f : Rd × [t0, T ] −→ Rd and g : Rd × [t0, T ] −→ Rd×m

satisfy the Lipschitz condition; that is, for all x, y ∈ Rd and t ∈ [t0, T ],

|f(x, t)− f(y, t)|2 ∨ |g(x, t)− g(y, t)|2 ≤ K|x− y|2. (5)

Assumption 2. Both f : Rd × [t0, T ] −→ Rd and g : Rd × [t0, T ] −→ Rd×m

satisfy the linear growth condition; that is, for any x, y ∈ Rd and t ∈ [t0, T ],

|f(x, t)|2 ∨ |g(x, t)|2 ≤ K(1 + |x|2). (6)

Assumption 3. Let p ≥ 2. For positive constant α and all (x, t) ∈ Rd× [t0, T ],

|xT f(x, t)| ∨ (p− 1)

2
|g(x, t)|2 ≤ α(1 + |x|2). (7)

Assumption 4. Both f : Rd × [t0, T ] −→ Rd and g : Rd × [t0, T ] −→ Rd×m

satisfy the weakened linear growth condition; that is, for any t ∈ [t0, T ],

|f(0, t)|2 ∨ |g(0, t)|2 ≤ K. (8)

Assumption 5. Let p ≥ 2 and x0 ∈ Lp(Ω;Rd). Assume that there are positive
constants β, γ such that for all (x, t) ∈ Rd × [t0, T ],

|xT f(0, t)| ∨ (p− 1)|g(0, t)|2 ≤ β, (9)

|xT (f(x, t)− f(y, t))| ∨ (p− 1)|g(x, t)− g(y, t)|2 ≤ γ|x− y|2. (10)

3. Uniform Lp-continuity

In this section, we will present a new uniform Lp-continuity of the solution
for SDEs under Assumption 1-3.

Now, we assume that x(t), t0 ≤ t ≤ T is the unique solution of the equation
(4) with initial value x(t0) = x0 under Assumption 1 and Assumption 2 or under
Assumption 1 and Assumption 4.

Lemma 3.1. Let p ≥ 2 and x0 ∈ Lp(Ω;Rd). Let Assumption 3 hold. Then

E
(
[1 + |x(t)|2]

p
2

)
≤ 2(p−2)/2[1 + E|x0|p] exp(2pα(T − t0)). (11)

Proof. By Itô’s formula, we can derive that for t ∈ [t0, T ],

[1 + |x(t)|2]p/2

= [1 + |x(t0)|2]p/2 + p

∫ t

t0

[1 + |x(s)|2](p−2)/2xT (s)f(x(s), s)ds
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+
p

2

∫ t

t0

[1 + |x(s)|2](p−2)/2|g(x(s), s)|2ds

+
p(p− 2)

2

∫ t

t0

[1 + |x(s)|2](p−4)/2|xT (s)g(x(s), s)|2ds

+p

∫ t

t0

[1 + |x(s)|2](p−2)/2xT (s)g(x(s), s)dB(s)

≤ 2
p−2
2 [1 + |x0|p] + p

∫ t

t0

[1 + |x(s)|2]
p−2
2

×
[
xT (s)f(x(s), s) +

p− 1

2
|g(x(s), s)|2

]
ds

+p

∫ t

t0

[1 + |x(s)|2](p−2)/2xT (s)g(x(s), s)dB(s)

≤ 2
p−2
2 [1 + |x0|p] + 2αp

∫ t

t0

[1 + |x(s)|2]
p
2 ds

+p

∫ t

t0

[1 + |x(s)|2](p−2)/2xT (s)g(x(s), s)dB(s). (12)

For each number n ≥ 1, define the stopping time

τn = T ∧ inf{t ∈ [t0, T ] : |x(t) ≥ n}.

Obviously, as n → ∞, τn ↑ T a.s.. Moreover, it follows from (12) and the
property of Itô’s integral that

E
(
[1 + |x(t ∧ τn)|2]

p
2

)
≤ 2

p−2
2 [1 + E|x0|p] + 2αpE

∫ t∧τn

t0

[1 + |x(s)|2]
p
2 ds

≤ 2
p−2
2 [1 + E|x0|p] + 2αp

∫ t

t0

E
(
[1 + |x(s ∧ τn)|2]

p
2

)
ds.

The Gronwall inequality yields

E
(
[1 + |x(t ∧ τn)|2]

p
2

)
≤ 2

p−2
2 [1 + E|x0|p]e2αp(t−t0).

Letting n → ∞ yields

E
(
[1 + |x(t)|2]

p
2

)
≤ 2

p−2
2 [1 + E|x0|p]e2αp(t−t0)

and the desired inequality follows. �

Theorem 3.2. Let Assumptions 1-3 hold. Assume that x(t), t0 ≤ t ≤ T is the
unique solution of the equation (4). Then E|x(t)|p is uniformly continuous on
[t0, T ].
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Proof. By Itô’s formula, we can derive that for t ∈ [t0, T ],

[|x(t)|2]p/2

= [|x(t0)|2]p/2 + p

∫ t

t0

[|x(s)|2](p−2)/2xT (s)f(x(s), s)ds

+
p

2

∫ t

t0

[|x(s)|2](p−2)/2|g(x(s), s)|2ds

+
p(p− 2)

2

∫ t

t0

[|x(s)|2](p−4)/2|xT (s)g(x(s), s)|2ds

+p

∫ t

t0

[|x(s)|2](p−2)/2xT (s)g(x(s), s)dB(s)

≤ |x0|p + 2αp

∫ t

t0

[|x(s)|2](p−2)/2[1 + |x(s)|2]ds

+p

∫ t

t0

[|x(s)|2](p−2)/2xT (s)g(x(s), s)dB(s). (13)

For each number n ≥ 1, define the stopping time

τn = T ∧ inf{t ∈ [t0, T ] : |x(t)| ≥ n}.

Obviously, as n → ∞, τn ↑ T a.s.. Moreover, it follows from (13) and the
property of Itô’s integral that

E
(
|x(t ∧ τn)|p

)
≤ E|x0|p + 2αpE

∫ t∧τn

t0

[1 + |x(s)|2]
p
2 ds

≤ E|x0|p + 2αp

∫ t

t0

E
(
[1 + |x(s ∧ τn)|2]

p
2

)
ds.

Letting n → ∞ yields

E|x(t)|p ≤ E|x0|p + 2αp

∫ t

t0

E
(
[1 + |x(s)|2]

p
2

)
ds.

Hence, we have

|E|x(t)|p − E|x(s)|p| ≤ 2αp

∫ t

s

E
(
[1 + |x(s)|2]

p
2

)
ds.

Applying Lemma 3.1, we get

|E|x(t)|p − E|x(s)|p| ≤ αp2p[1 + E|x0|p]e2pα(T−t0)(t− s).

This implies E|x(t)|p is uniformly continuous on t0 ≤ t ≤ T. The proof is
complete. �



496 Young-Ho Kim

Lemma 3.3. Let p ≥ 2 and x0 ∈ Lp(Ω;Rd). Let Assumption 5 hold. Then

E
(
[β/γ + |x(t)|2]

p
2

)
≤ 2(p−2)/2[β/γ + E|x0|p] exp(2pγ(T − t0)). (14)

Proof. By Itô’s formula, we can derive that for t ∈ [t0, T ],

[β/γ + |x(t)|2]p/2

= [α/β + |x(t0)|2]p/2 + p

∫ t

t0

[α/β + |x(s)|2](p−2)/2xT (s)f(x(s), s)ds

+
p

2

∫ t

t0

[β/γ + |x(s)|2](p−2)/2|g(x(s), s)|2ds

+
p(p− 2)

2

∫ t

t0

[β/γ + |x(s)|2](p−4)/2|xT (s)g(x(s), s)|2ds

+p

∫ t

t0

[β/γ + |x(s)|2](p−2)/2xT (s)g(x(s), s)dB(s)

By the Assumption 5, it is easy to see that

[β/γ + |x(t)|2]
p
2 (15)

≤ 2
p−2
2 [(β/γ)

p
2 + |x0|p] + p

∫ t

t0

[β/γ + |x(s)|2]
p−2
2

×
[
xT (s)[f(x(s), s)− f(0, s) + f(0, s)]

+
p− 1

2
|g(x(s), s)− g(0, s) + g(0, s)|2

]
ds

+p

∫ t

t0

[β/γ + |x(s)|2](p−2)/2xT (s)g(x(s), s)dB(s)

≤ 2
p−2
2 [(β/γ)

p
2 + |x0|p] + 2γp

∫ t

t0

[β/γ + |x(s)|2]
p
2 ds

+p

∫ t

t0

[β/γ + |x(s)|2](p−2)/2xT (s)g(x(s), s)dB(s).

For each number n ≥ 1, define the stopping time

τn = T ∧ inf{t ∈ [t0, T ] : |x(t)| ≥ n}.
Obviously, as n → ∞, τn ↑ T a.s.. Moreover, it follows from (15) and the
property of Itô’s integral that

E
(
[β/γ + |x(t ∧ τn)|2]

p
2

)
≤ 2

p−2
2 [(β/γ)

p
2 + E|x0|p] + 2γpE

∫ t∧τn

t0

[β/γ + |x(s)|2]
p
2 ds

≤ 2
p−2
2 [(β/γ)

p
2 + E|x0|p] + 2γp

∫ t

t0

E
(
[β/γ + |x(s ∧ τn)|2]

p
2

)
ds.
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The Gronwall inequality yields

E
(
[β/γ + |x(t ∧ τn)|2]

p
2

)
≤ 2

p−2
2 [(β/γ)

p
2 + E|x0|p]e2γp(t−t0).

Letting n → ∞ yields

E
(
[β/γ + |x(t)|2]

p
2

)
≤ 2

p−2
2 [(β/γ)

p
2 + E|x0|p]e2γp(t−t0)

and the desired inequality follows. �

Theorem 3.4. Assume that x(t), t0 ≤ t ≤ T is the unique solution of the equa-
tion (4) under Assumption 1 and Assumptions 4-5. Then E|x(t)|p is uniformly
continuous on [t0, T ].

Proof. Applying Lemma 3.3, we can prove this Theorem in a similar way of the
proof as Theorem 3.2, so it is omitted. �
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