• Title/Summary/Keyword: ${\gamma}-ray$ radiation

Search Result 845, Processing Time 0.026 seconds

Comparison of Irradiation Effect of Different Radiation Types on Decontamination of Microorganisms in Red Pepper Powder (고춧가루 오염 미생물의 제어에서 방사선종별 조사 효과)

  • Park, Kyung-Sook
    • Journal of Radiation Industry
    • /
    • v.8 no.1
    • /
    • pp.1-5
    • /
    • 2014
  • This study investigated the reduction of microbial population and sensory properties in red pepper powders irradiated by gamma ray, electron beam, and X-ray. Populations of total aerobic bacteria and yeast & molds in red pepper powders were decreased by irradiation treatment in a dose-dependent manner. Gamma ray, electron beam, and X-ray at doses above 8 kGy caused 100% inhibition on growth of aerobic bacteria in red pepper powders. Inhibitory activity of X-ray on sterilization of red pepper powders was significantly equal to or higher compared to gamma ray and electron beam. Color and off flavor in red pepper powders were no significant difference among the control and samples irradiated with gamma ray, electron beam, and X-ray. As a result, the gamma ray, electron beam, and X-ray irradiation can be used to sterilize the microbial growth in red pepper powders without quality loss.

Differential Modulation of Volatile Constituents in Artemisia princeps and Artemisia argyi Plants after Gamma Ray or Electron Beam Irradiation

  • Kim, Ji Hong;Cho, Eun Ju;Lee, Min Hee;Kim, Ji Eun;Chung, Byung Yeoup;Kim, Tae Hoon;Kim, Jin-Hong
    • Journal of Radiation Industry
    • /
    • v.6 no.1
    • /
    • pp.17-21
    • /
    • 2012
  • The effects of gamma ray or electron beam irradiation on herbaceous medicinal plants were investigated in terms of the composition of volatile constituents using the aerial parts or leaves of Artemisia princeps Pamp. cv. Ganghwayakssuk and Artemisia argyi cvs. Namhaeyakssuk and Hwanghaessuk. The composition of volatile constituents in leaves was clearly distinguishable among the three Artemisia cultivars. However, the relative proportions of the major volatile constituents such as 1,8-cineole, ${\alpha}$-pinene, camphene, santolina triene, and artemesia triene, were similarly changed in two or three cultivars by gamma ray or electron beam irradiation. In particular, the proportion of 1,8-cineole was increased up to 1.29- to 1.71-fold in the three cultivars after irradiation with gamma ray. These results suggest that gamma ray or electron beam irradiation can be applied to modulate the composition of volatile constituents in the leaves of Artemisia plants.

Bentonite based ceramic materials from a perspective of gamma-ray shielding: Preparation, characterization and performance evaluation

  • Asal, Sinan;Erenturk, Sema Akyil;Haciyakupoglu, Sevilay
    • Nuclear Engineering and Technology
    • /
    • v.53 no.5
    • /
    • pp.1634-1641
    • /
    • 2021
  • Exposure to gamma-rays is hazardous for humans and other living beings because of their high penetration through the materials. For this reason, shielding materials (usually lead, copper and stainless steel) are used to protect against gamma rays. This study's objective was to prepare ceramic materials for gamma radiation shielding by using different natural bentonite clays. Gamma-ray attenuation performances of the prepared shielding materials at different thicknesses were investigated and evaluated for different gamma-ray energies from different standard point gamma radiation sources (251Am, 57Co, 137Cs, 60Co, and 88Y). The mass and linear attenuation coefficients of the prepared ceramics vary between 0.238 and 0.443 cm2 g-1 and between 0.479 and 1.06 cm-1, respectively, depending on their thicknesses. Results showed that these materials could be prioritized because of their evidential properties of gamma radiation protection in radiation applications.

Hyperoside Protects Cells against Gamma Ray Radiation-Induced Apoptosis in Hamster Lung Fibroblast

  • Piao, Mei Jing;Kim, Ki Cheon;Cho, Suk Ju;Chae, Sungwook;Kang, Sam Sik;Hyun, Jin Won
    • Natural Product Sciences
    • /
    • v.19 no.2
    • /
    • pp.127-136
    • /
    • 2013
  • Ionizing radiation, including that evoked by gamma (${\gamma}$)-rays, induces oxidative stress through the generation of reactive oxygen species, resulting in apoptosis, or programmed cell death. This study aimed to elucidate the radioprotective effects of hyperoside (quercetin-3-O-galactoside) against ${\gamma}$-ray radiation-induced apoptosis in Chinese hamster lung fibroblasts, V79-4 and demonstrated that the compound reduced levels of intracellular reactive oxygen species in ${\gamma}$-ray-irradiated cells. Hyperoside also protected irradiated cells against DNA damage (evidenced by pronounced DNA tails and elevated phospho-histone H2AX and 8-oxoguanine content) and membrane lipid peroxidation. Furthermore, hyperoside prevented the ${\gamma}$-ray-provoked reduction in cell viability via the inhibition of apoptosis through the increased levels of Bcl-2, the decreased levels of Bax and cytosolic cytochrome c, and the decrease of the active caspase 9 and caspase 3 expression. Taken together, these results suggest that hyperoside defend cells against ${\gamma}$-ray radiation-induced apoptosis by inhibiting oxidative stress.

GALAXY CLUSTERS IN GAMMA-RAYS: AN ASSESSMENT FROM OBSERVATIONS

  • REIMER OLAF
    • Journal of The Korean Astronomical Society
    • /
    • v.37 no.5
    • /
    • pp.307-313
    • /
    • 2004
  • Clusters of galaxies are believed to constitute a population of astrophysical objects potentially able to emit electromagnetic radiation up to gamma-ray energies. Evidence of the existence of non-thermal radiation processes in galaxy clusters is indicated from observations of diffuse radio halos, hard X-ray and EUV excess emission. The presence of cosmic ray acceleration processes and its confinement on cosmological timescales nearly inevitably yields in predicting energetic gamma-ray emission, either directly deduceably from a cluster's multifreqency emission characteristics or indirectly during large-scale cosmological structure formation processes. This theoretical reasoning suggests several scenarios to actually detect galaxy clusters at gamma-ray wavelengths: Either resolved as individual sources of point-like or extended gamma-ray emission, by investigating spatial-statistical correlations with unidentified gamma-ray sources or, if unresolved, through their contribution to the extragalactic diffuse gamma-ray background. In the following I review the situation concerning the proposed relation between galaxy clusters and high-energy gamma-ray observations from an observational point-of-view.

Development of an efficient method of radiation characteristic analysis using a portable simultaneous measurement system for neutron and gamma-ray

  • Jin, Dong-Sik;Hong, Yong-Ho;Kim, Hui-Gyeong;Kwak, Sang-Soo;Lee, Jae-Geun;Jung, Young-Suk
    • Analytical Science and Technology
    • /
    • v.35 no.2
    • /
    • pp.69-81
    • /
    • 2022
  • The method of measuring and classifying the energy category of neutrons directly using raw data acquired through a CZT detector is not satisfactory, in terms of accuracy and efficiency, because of its poor energy resolution and low measurement efficiency. Moreover, this method of measuring and analyzing the characteristics of low-energy or low-activity gamma-ray sources might be not accurate and efficient in the case of neutrons because of various factors, such as the noise of the CZT detector itself and the influence of environmental radiation. We have therefore developed an efficient method of analyzing radiation characteristics using a neutron and gamma-ray analysis algorithm for the rapid and clear identification of the type, energy, and radioactivity of gamma-ray sources as well as the detection and classification of the energy category (fast or thermal neutrons) of neutron sources, employing raw data acquired through a CZT detector. The neutron analysis algorithm is based on the fact that in the energy-spectrum channel of 558.6 keV emitted in the nuclear reaction 113Cd + 1n → 114Cd + in the CZT detector, there is a notable difference in detection information between a CZT detector without a PE modulator and a CZT detector with a PE modulator, but there is no significant difference between the two detectors in other energy-spectrum channels. In addition, the gamma-ray analysis algorithm uses the difference in the detection information of the CZT detector between the unique characteristic energy-spectrum channel of a gamma-ray source and other channels. This efficient method of analyzing radiation characteristics is expected to be useful for the rapid radiation detection and accurate information collection on radiation sources, which are required to minimize radiation damage and manage accidents in national disaster situations, such as large-scale radioactivity leak accidents at nuclear power plants or nuclear material handling facilities.

Comparison of Characteristics of Gamma-Ray Imager Based on Coded Aperture by Varying the Thickness of the BGO Scintillator

  • Seoryeong Park;Mark D. Hammig;Manhee Jeong
    • Journal of Radiation Protection and Research
    • /
    • v.47 no.4
    • /
    • pp.214-225
    • /
    • 2022
  • Background: The conventional cerium-doped Gd2Al2Ga3O12 (GAGG(Ce)) scintillator-based gamma-ray imager has a bulky detector, which can lead to incorrect positioning of the gammaray source if the shielding against background radiation is not appropriately designed. In addition, portability is important in complex environments such as inside nuclear power plants, yet existing gamma-ray imager based on a tungsten mask tends to be weighty and therefore difficult to handle. Motivated by the need to develop a system that is not sensitive to background radiation and is portable, we changed the material of the scintillator and the coded aperture. Materials and Methods: The existing GAGG(Ce) was replaced with Bi4Ge3O12 (BGO), a scintillator with high gamma-ray detection efficiency but low energy resolution, and replaced the tungsten (W) used in the existing coded aperture with lead (Pb). Each BGO scintillator is pixelated with 144 elements (12 × 12), and each pixel has an area of 4 mm × 4 mm and the scintillator thickness ranges from 5 to 20 mm (5, 10, and 20 mm). A coded aperture consisting of Pb with a thickness of 20 mm was applied to the BGO scintillators of all thicknesses. Results and Discussion: Spectroscopic characterization, imaging performance, and image quality evaluation revealed the 10 mm-thick BGO scintillators enabled the portable gamma-ray imager to deliver optimal performance. Although its performance is slightly inferior to that of existing GAGG(Ce)-based gamma-ray imager, the results confirmed that the manufacturing cost and the system's overall weight can be reduced. Conclusion: Despite the spectral characteristics, imaging system performance, and image quality is slightly lower than that of GAGG(Ce), the results show that BGO scintillators are preferable for gamma-ray imaging systems in terms of cost and ease of deployment, and the proposed design is well worth applying to systems intended for use in areas that do not require high precision.

Assessment of the terrestrial gamma radiation dose in Korea

  • Choi, Seok-Won;Yun, Ju-Yong;Kim, Chang-Kyu;Rho, Byung-Hwan;Lee, Jong-Seong
    • Journal of Radiation Protection and Research
    • /
    • v.30 no.4
    • /
    • pp.161-165
    • /
    • 2005
  • The gamma-ray dose rates in air at 233 locations in Korea have been determined. The contribution to the gamma-ray dose rates in air due to the presence of $^{232}Th-series,\;^{238}U-series\;and\;^{40}K$ is as follows: 47.3% $(36\;nGyh^{-1})\;^{232}Th-series$ 14.5% $(11\;nGyh^{-1})\;^{238}U-series$ and 38.2% $(29\;nGyh^{-1})\;^{40}K$. The mean gamma-ray dose rate theoretically derived from $^{232}Th-series,\;^{238}U-series\;and\;^{40}K\;was\;76{\pm}17\;nGyh^{-1}$. This corresponds to an annual effective dose of $410\;{\mu}Sv$ and an annual collective dose of 18900 person-Sv for all provinces under study. The results have been compared with other global radiation dose.

Effect of Gamma Ray on Molecular Structures of Alkali-Lignin (감마선이 알칼리 리그닌의 분자구조에 미치는 영향)

  • Kim, Du Yeong;Jeun, Joon Pyo;Shin, Hye Kyoung;Kang, Phil Hyun
    • Journal of Radiation Industry
    • /
    • v.5 no.3
    • /
    • pp.249-252
    • /
    • 2011
  • Lignin is one of the natural macromolecules. Every year large amount of lignin arises from the cellulose production as a by-product worldwide. The use of lignin as a precursor to carbonaceous materials has gained interest due to its low cost and high availability. Therefore, we improved the properties of alkali-lignin by exposing to gamma ray in this study. The alkali-lignin is irradiated by Gamma ray irradiation with varying doses. The char yields of alkali-lignin were investigated by increasing up to 50 kGy. The cross-linking and bond scission of alkali-lignin occur simultaneously during gamma ray irradiation. The crosslinking was predominantly accelerated by gamma ray irradiation up to 50 kGy. Bond scission predominantly occurs between 50 and 500 kGy. ESCA analysis indicated that the alcoholic carbon increase up to 50 kGy. Solution viscosity was increased as absorbed dose increased up to 20 kGy. In addition, the aromatic ring was not influenced by irradiation at doses ranging from 20 to 500 kGy as shown in FT-IR results.

The Study for the Method of Fast and Efficient Gamma-ray Detection for the Stereo Gamma-ray Ddetection System (스테레오 감마선 탐지장치의 고속 방사선 탐지기법에 관한 연구)

  • Hwang, Young-Gwan;Lee, Nam-Ho
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.63 no.9
    • /
    • pp.1253-1258
    • /
    • 2014
  • In this paper, we propose the fast and efficient detection method using the continuous measurement technique for the gamma-ray signal acquisition. This method is improved than the conventional method for the getting information of the radiation distribution. First, we implement the stereo radiation detection system using gamma-ray sensors and the motion controller. We apply continuous measurement technique to the gamma-ray detector and conduct gamma-ray irradiation test for the comparison of detection techniques. The results show that the continuous measurement technique has the high efficient performance than the conventional method.