Browse > Article
http://dx.doi.org/10.1016/j.net.2020.11.009

Bentonite based ceramic materials from a perspective of gamma-ray shielding: Preparation, characterization and performance evaluation  

Asal, Sinan (Energy Institute, Istanbul Technical University)
Erenturk, Sema Akyil (Energy Institute, Istanbul Technical University)
Haciyakupoglu, Sevilay (Energy Institute, Istanbul Technical University)
Publication Information
Nuclear Engineering and Technology / v.53, no.5, 2021 , pp. 1634-1641 More about this Journal
Abstract
Exposure to gamma-rays is hazardous for humans and other living beings because of their high penetration through the materials. For this reason, shielding materials (usually lead, copper and stainless steel) are used to protect against gamma rays. This study's objective was to prepare ceramic materials for gamma radiation shielding by using different natural bentonite clays. Gamma-ray attenuation performances of the prepared shielding materials at different thicknesses were investigated and evaluated for different gamma-ray energies from different standard point gamma radiation sources (251Am, 57Co, 137Cs, 60Co, and 88Y). The mass and linear attenuation coefficients of the prepared ceramics vary between 0.238 and 0.443 cm2 g-1 and between 0.479 and 1.06 cm-1, respectively, depending on their thicknesses. Results showed that these materials could be prioritized because of their evidential properties of gamma radiation protection in radiation applications.
Keywords
Gamma-ray shielding; Bentonite; Ceramic; Attenuation coefficient; Half value thickness; Tenth value thickness;
Citations & Related Records
연도 인용수 순위
  • Reference
1 E. Cokca, Z. Yilmaz, Use of rubber and bentonite added fly ash as a liner material, Waste Manag. 24 (2004) 153-164.   DOI
2 H. Akgun, A.G. Turkmenoglu, I. Met, G.P. Yal, M.K. Kockar, The use of Ankara Clay as a compacted clay liner for landfill sites, Clay Miner. 52 (2017) 391-412.   DOI
3 N. Tsoulfanidis, S. Landsberger, Measurement and Detection of Radiation, third ed., CRC Press, Boca Raton, 2010.
4 ORTEC, GMX Series Coaxial HPGe Detector Product Configuration Guide, 2003.
5 L. Chang, Y. Zhang, Y. Liu, J. Fang, W. Luan, X. Yang, W. Zhang, Preparation and characterization of tungsten/epoxy composites for g-rays radiation shielding, Nucl. Instrum. Methods B. 356-357 (2015) 88-93.   DOI
6 J.E. Martin, Physics for Radiation Protection, Markono Print Media Pte Ltd, Singapore, 2013.
7 R.B. Firestone, in: A. Vertes, S. Nagy, Z. Klencs ar, R.G. Lovas, F. R osch (Eds.), Handbook of Nuclear Chemistry, Springer, Berlin, 2011.
8 N.J. AbuAlRoos, N.A.B. Amin, R. Zainon, Conventional and new lead-free radiation shielding materials for radiation protection in nuclear medicine: a review, Radiat. Phys. Chem. 165 (2019) 108439.   DOI
9 V.P. Singh, N.M. Badiger, Gamma ray and neutron shielding properties of some alloy materials, Ann. Nucl. Energy 64 (2014) 301-310.   DOI
10 M.M. El-Toony, G. Eid, H.M. Algarnic, T.F. Alhawimald, E.E. Abel-Hady, Synthesis and characterisation of smart poly vinyl ester/Pb2O3 nanocomposite for gamma radiation shielding, Radiat. Phys. Chem. 168 (2020) 108536, https://doi.org/10.1016/j.radphyschem.2019.108536.   DOI
11 C.V. More, R.R. Bhosale, P.P. Pawar, Detection of new polymer materials as gamma-ray-shielding materials, Radiation Effects and Defects in Solids, Incorporating Plasma Science and Plasma Technology 172 (5-6) (2017) 469-484.
12 M.H. Kharita, M. Takeyeddin, M. Alnassar, S. Yousef, Development of special radiation shielding concretes using natural local materials and evaluation of their shielding characteristics, Prog. Nucl. Energy 50 (2008) 33-36.   DOI
13 M.R. Kacal, F. Akman, M.I. Sayyed, Investigation of radiation shielding properties for some ceramics, Radiochim. Acta 107 (2) (2018) 179-191.
14 M. Gorbotenko, Y. Yuferev, Ceramicrete as a Means for Radioactive Waste Containment and Nuclear Shielding, Reports by All-Russian Research Institute of Experimental Physics Federation, to Argonne National Laboratory, Sarov, Russian, 2002.
15 K.J. Singh, N. Singh, R.S. Kaundal, K. Singh, Gamma-ray shielding and structural properties of PbO-SiO2 glasses, Ann. Nucl. Energy 64 (2014) 301-310.   DOI
16 B. Ahmed, G.B. Shah, A.H. Malik, R.M. Aurangzeb, Gamma-ray shielding characteristics of flexible silicone tungsten composites, Appl. Radiat. Isot. 155 (2020) 108901.   DOI
17 F. Cattant, D. Crusset, D. Feron, Corrosion issues in nuclear industry today, Mater. Today 11 (10) (2008) 32-37.   DOI
18 A. Mansour, M.I. Sayyed, K.A. Mahmoud, E. S, akar, E.G. Kovaleva, Modified halloysite minerals for radiation shielding purposes, J. Radiat. Res. Appl. Sc. 13 (1) (2020) 94-101.   DOI
19 M.I. Sayyed, A. Kumar, H.O. Tekin, R. Kaur, M. Singh, O. Agar, M.U. Khandaker, Evaluation of gamma-ray and neutron shielding features of heavy metals doped Bi2O3-BaO-Na2O-MgO-B2O3 glass systems, Prog. Nucl. Energy 118 (2020) 103118, https://doi.org/10.1016/j.pnucene.2019.103118.   DOI
20 S.S. Obaid, M.I. Sayyed, D.K. Gaikwad, P.P. Pawar, Attenuation coefficients and exposure buildup factor of some rocks for gamma ray shielding applications, Radiat. Phys. Chem. 148 (2018) 86-94.   DOI
21 S.A.M. Issa, A.M. Ali, H.O. Tekin, Y.B. Saddeek, A. Al-Hajry, H. Algarni, G. Susoy, Enhancement of nuclear radiation shielding and mechanical properties of YBiBO3 glasses using La2O3, Nucl. Eng. Technol. 52 (2020) 1297-1303.   DOI
22 S. Mahmoudi, A. Bennour, A. Meguebli, E. Srasra, F. Zargouni, Characterization and traditional ceramic application of clays from the Douiret region in South Tunisia, Appl. Clay Sci. 127-128 (2016) 78-87.   DOI
23 British Geological Survey, World Mineral Production, 2008-12, British Geological Survey, 2012. Keyworth, Nottingham.
24 J. Klimke, M. Trunec, A. Krell, Transparent tetragonal Yttria-stabilized zirconia ceramics: influence of scattering caused by birefringence, J. Am. Ceram. Soc. 94 (6) (2011) 1850-1858.   DOI
25 R.R. Enrique, A.R.G. Jose, E.V. Sergio, C.S. Brianda, E.G. Ivanovich, M.S. Roberto, Effect of particle size and titanium content on the fracture toughness of particle-ceramic composites, Mater. Today, Proceedings 3 (2016) 249-257.   DOI
26 E. Kavaz, F.I. El_Agawany, H.O. Tekin, U. Perisanoglu, Y.S. Rammah, Nuclear radiation shielding using barium borosilicate glass ceramics, J. Phys. Chem. Solid. 142 (2020) 109437.   DOI
27 A.S. Wagh, S.Y. Sayenko, A. Dovbnya, V. Shkuropatenko, R. Tarasov, A. Rybka, A. Zakharchenko, Durability and shielding performance of borated ceramicrete coatings in beta and gamma radiation fields, J. Nucl. Mater. 462 (2015) 165-172.   DOI
28 F. Akman, M.R. Kacal, M.I. Sayyed, H.A. Karata, Study of gamma radiation attenuation properties of some selected ternary alloys, J. Alloys Compd. 782 (2019) 315-322.   DOI
29 A. Levet, E. Kavaz, Y. Ozdemir, An experimental study on the investigation of nuclear radiation shielding characteristics in iron-boron alloys, J. Alloys Compd. 819 (2020) 152946, https://doi.org/10.1016/j.jallcom.2019.152946.   DOI
30 F. Akman, Z.Y. Khattari, M.R. Kacal, M.I. Sayyed, F. Afaneh, The radiation shielding features for some silicide, boride and oxide types ceramics, Radiat. Phys. Chem. 160 (2019) 9-14.   DOI
31 G. Hu, H. Hu, Q. Yang, B. Yu, W. Sun, Study on the design and experimental verification of multilayer radiation shield against mixed neutrons and γ-rays, Nucl. Eng. Technol. 52 (1) (2020) 178-184.   DOI
32 C.G. Hernandez-Murillo, J.R.M. Contreras, L.A. Escalera-Velasco, H.A. de Leon-Martinez, H.R. Vega-Carrillo, X-ray and gamma ray shielding behavior of concrete blocks, Nucl. Eng. Technol. 52 (8) (2020) 1792-1797.   DOI
33 J. Klimke, M. Trunec, A. Krell, Transparent tetragonal Yttria-stabilized zirconia ceramics: influence of scattering caused by birefringence, J. Am. Ceram. Soc. 94 (6) (2011) 1850-1858.   DOI
34 O. Yazici, Investigation of Sol-Gel Derived Spinel Added Alumina Low Cement Castable Refractories, 2008, p. 52. MSc Thesis (in Turkish).
35 M.I. Sayyed, H.O. Tekin, O. Kilicoglu, O. Agar, M.H.M. Zaid, Shielding features of concrete types containing sepiolite mineral: comprehensive study on experimental, XCOM and MCNPX results, Results in Physics 11 (2018) 40-45.   DOI
36 J.E. Turner, Atoms, Radiation, and Radiation Protection, Wiley, New York, 2007.
37 M.E. Mahmoud, A.M. El-Khatib, M.S. Badawi, A.R. Rashad, R.M. El-Sharkawy, A.A. Thabet, Recycled high-density polyethylene plastics added with lead oxide nanoparticles as sustainable radiation shielding materials, Radiat. Phys. Chem. 145 (2018) 160-173.   DOI
38 R. Mirji, B. Lobo, Study of polycarbonateebismuth nitrate composite for shielding against gamma radiation, J. Radioanal. Nucl. Chem. 324 (2020) 7-19.   DOI
39 L. Chang, Y. Zhang, Y. Liu, J. Fang, W. Luan, X. Yang, W. Zhang, Preparation and characterization of tungsten/epoxy composites for γ-rays radiation shielding, Nucl. Instrum. Methods B. 356-357 (2015) 88-93.   DOI
40 T. Kaur, J. Sharma, T. Singh, Review on scope of metallic alloys in gamma rays shield designing, Prog. Nucl. Energy 113 (2019) 95-113.   DOI
41 R.R. Enrique, A.R.G. Jose, E.V. Sergio, C.S. Brianda, E.G. Ivanovich, M.S. Roberto, Effect of particle size and titanium content on the fracture toughness of particle-ceramic composites, Mater. Today, Proceedings 3 (2016) 249-257.   DOI
42 W. Cheewasukhanont, P. Limkitjaroenporn, S. Kothan, C. Kedkaew, J. Kaewkhao, The effect of particle size on radiation shielding properties for bismuth borosilicate glass, Radiat. Phys. Chem. 172 (2020) 108791, https://doi.org/10.1016/j.radphyschem.2020.108791.   DOI
43 A.E. Abdo, M.A. El-Sarraf, F.A. Gaber, Utilization of ilmenite/epoxy composite for neutrons and gamma rays attenuation, Ann. Nucl. Energy 30 (2003) 175-187.   DOI
44 I. Hager, Y.S. Rammah, H.A. Othman, E.M. Ibrahim, S.F. Hassan, Nano-structured natural bentonite clay coated by polyvinyl alcohol polymer for gamma rays attenuation, J. Theor. Appl. Phys. 13 (2019) 141-153.   DOI
45 S. Stojiljkovic, M. Stamenkovic, D. Kostic, M. Miljkovic, B. Arsic, I. Savic, I. Savic, Investigations of the changes in the bentonite structure caused by the different treatments, Sci. Sinter. 47 (2015) 51-59.   DOI
46 Radioisotopes in Medicine, https://www.world-nuclear.org/information-library/non-power-nuclear-applications/radioisotopes-research/radioisotopes-in-medicine.aspx (accessed 12 Mar 2020).
47 M.E. Mahmoud, A.M. El-Khatib, A.M. Halbas, R.M. El-Sharkawy, Investigation of physical, mechanical and gamma-ray shielding properties using ceramic tiles incorporated with powdered lead oxide, Ceram. Int. 46 (2020) 15686-15694.   DOI
48 H.H. Murray, Bentonite applications, in: Developments in Clay Science, vol. 2, Elsevier, New York, 2006, pp. 111-130.
49 G. Bulut, M. Chimeddorj, F. Esenli, M.S. Celik, Production of desiccants from Turkish bentonites, Appl. Clay Sci. 46 (2009) 141-147.   DOI
50 H.S. Isfahani, S.M. Abtahi, M.A. Roshanzamir, A. Shirani, S.M. Hejazi, Investigation on gamma-ray shielding and permeability of clay-steel slag mixture, Bull. Eng. Geol. Environ. 78 (2019) 4589-4598.   DOI
51 S. Mirzadeh, L.F. Mausner, M.A. Garland, A. Vertes, S. Nagy, Z. Klencsar, R.G. Lovas, F. Rosch (Eds.), Handbook of Nuclear Chemistry, Springer, Berlin, 2011.
52 G. Bulut, M. Chimeddorj, F. Esenli, M.S. Celik, Production of desiccants from Turkish bentonites, Appl. Clay Sci. 46 (2009) 141-147.   DOI