• Title/Summary/Keyword: ${\gamma}-Aminobutyric$ acid

Search Result 376, Processing Time 0.027 seconds

The Development of Phasic and Tonic Inhibition in the Rat Visual Cortex

  • Jang, Hyun-Jong;Cho, Kwang-Hyun;Park, Sung-Won;Kim, Myung-Jun;Yoon, Shin-Hee;Rhie, Duck-Joo
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.14 no.6
    • /
    • pp.399-405
    • /
    • 2010
  • Gamma-aminobutyric acid (GABA)-ergic inhibition is important in the function of the visual cortex. In a previous study, we reported a developmental increase in $GABA_A$ receptor-mediated inhibition in the rat visual cortex from 3 to 5 weeks of age. Because this developmental increase is crucial to the regulation of the induction of long-term synaptic plasticity, in the present study we investigated in detail the postnatal development of phasic and tonic inhibition. The amplitude of phasic inhibition evoked by electrical stimulation increased during development from 3 to 8 weeks of age, and the peak time and decay kinetics of inhibitory postsynaptic potential (IPSP) and current (IPSC) slowed progressively. Since the membrane time constant decreased during this period, passive membrane properties might not be involved in the kinetic changes of IPSP and IPSC. Tonic inhibition, another mode of $GABA_A$ receptor-mediated inhibition, also increased developmentally and reached a plateau at 5 weeks of age. These results indicate that the time course of the postnatal development of GABAergic inhibition matched well that of the functional maturation of the visual cortex. Thus, the present study provides significant insight into the roles of inhibitory development in the functional maturation of the visual cortical circuits.

Participation of central GABAA receptors in the trigeminal processing of mechanical allodynia in rats

  • Kim, Min Ji;Park, Young Hong;Yang, Kui Ye;Ju, Jin Sook;Bae, Yong Chul;Han, Seong Kyu;Ahn, Dong Kuk
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.21 no.1
    • /
    • pp.65-74
    • /
    • 2017
  • Here we investigated the central processing mechanisms of mechanical allodynia and found a direct excitatory link with low-threshold input to nociceptive neurons. Experiments were performed on male Sprague-Dawley rats weighing 230-280 g. Subcutaneous injection of interleukin 1 beta ($IL-1{\beta}$) ($1ng/10{\mu}L$) was used to produce mechanical allodynia and thermal hyperalgesia. Intracisternal administration of bicuculline, a gamma aminobutyric acid A ($GABA_A$) receptor antagonist, produced mechanical allodynia in the orofacial area under normal conditions. However, intracisternal administration of bicuculline (50 ng) produced a paradoxical anti-allodynic effect under inflammatory pain conditions. Pretreatment with resiniferatoxin (RTX), which depletes capsaicin receptor protein in primary afferent fibers, did not alter the paradoxical anti-allodynic effects produced by the intracisternal injection of bicuculline. Intracisternal injection of bumetanide, an Na-K-Cl cotransporter (NKCC 1) inhibitor, reversed the $IL-1{\beta}$-induced mechanical allodynia. In the control group, application of GABA ($100{\mu}M$) or muscimol ($3{\mu}M$) led to membrane hyperpolarization in gramicidin perforated current clamp mode. However, in some neurons, application of GABA or muscimol led to membrane depolarization in the $IL-1{\beta}$-treated rats. These results suggest that some large myelinated $A{\beta}$ fibers gain access to the nociceptive system and elicit pain sensation via $GABA_A$ receptors under inflammatory pain conditions.

A Pilot Study of Psychological Traits in the Sasang Constitution According to the Braverman Nature Assessment

  • Lee, Soojin;Yu, Jun-Sang;Lee, Siwoo
    • Journal of Pharmacopuncture
    • /
    • v.18 no.4
    • /
    • pp.32-37
    • /
    • 2015
  • Objectives: The purpose of this study was to investigate the psychological characteristics of the Sasang constitutions by using Braverman nature assessment (BNA). Methods: One hundred seventy-four students participated in this study, and among them, the 142 individuals who had clearly identified Sasang constitutional types were used for the analysis. Sasang constitutions and the Braverman temperaments of the subjects were determined by using a questionnaire for the Sasang constitution classification (QSCC) II and BNA, respectively. Body mass index (BMI) was used to compare the inclinations of the Sasang constitutions and Braverman temperament types. Results: Significant differences in Braverman temperament type existed among the Sasang constitutions (P = 0.042), and the relations between Soyangin and the dopamine type and between Taeeumin and the gamma-aminobutyric acid (GABA) type were meaningful. Significant differences were also shown in the comparison with the Yin and the Yang constitutions (P = 0.017), and the post-hoc analysis showed a strong and significant relation between the Yang constitution and the dopamine type and between the Yin constitution and the GABA type. The one-way analysis of variance (ANOVA) and the independent t-test were conducted to examine the BMI and the degree of obesity among the Sasang constitutions and the Braverman temperament types. Concerning the BMI, Taeeumin showed a bigger BMI than the other constitutions (P < 0.001), but no significant differences in the BMI were observed between the Braverman temperament types. Conclusion: Soyangin has a close relationship to the dopamine type and Taeeumin has a close relationship to the GABA type. The correlation between two types were more clear when the Yin and the Yang types were compared to Braverman temperaments. These results may serve as a basis for identifying the psychological traits of Sasang constitutional types, especially in regard to the characteristics related to the four Braverman temperament types.

Phasic and Tonic Inhibition are Maintained Respectively by CaMKII and PKA in the Rat Visual Cortex

  • Joo, Kayoung;Yoon, Shin Hee;Rhie, Duck-Joo;Jang, Hyun-Jong
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.18 no.6
    • /
    • pp.517-524
    • /
    • 2014
  • Phasic and tonic ${\gamma}$-aminobutyric acidA ($GABA_A$) receptor-mediated inhibition critically regulate neuronal information processing. As these two inhibitory modalities have distinctive features in their receptor composition, subcellular localization of receptors, and the timing of receptor activation, it has been thought that they might exert distinct roles, if not completely separable, in the regulation of neuronal function. Inhibition should be maintained and regulated depending on changes in network activity, since maintenance of excitation-inhibition balance is essential for proper functioning of the nervous system. In the present study, we investigated how phasic and tonic inhibition are maintained and regulated by different signaling cascades. Inhibitory postsynaptic currents were measured as either electrically evoked events or spontaneous events to investigate regulation of phasic inhibition in layer 2/3 pyramidal neurons of the rat visual cortex. Tonic inhibition was assessed as changes in holding currents by the application of the $GABA_A$ receptor blocker bicuculline. Basal tone of phasic inhibition was maintained by intracellular $Ca^{2+}$ and $Ca^{2+}$/calmodulin-dependent protein kinase II (CaMKII). However, maintenance of tonic inhibition relied on protein kinase A activity. Depolarization of membrane potential (5 min of 0 mV holding) potentiated phasic inhibition via $Ca^{2+}$ and CaMKII but tonic inhibition was not affected. Thus, phasic and tonic inhibition seem to be independently maintained and regulated by different signaling cascades in the same cell. These results suggest that neuromodulatory signals might differentially regulate phasic and tonic inhibition in response to changes in brain states.

Aggression and Neurotransmitters (공격성과 신경전달물질)

  • Yu, Si Young;Choi, Yejee;Kim, Sangjoon;Jeong, Hyeonseok S.;Ma, Jiyoung;Kim, Young Hoon;Moon, Sohyeon;Kang, Ilhyang;Jeong, Eujin;Suh, Chae Won;Shin, Kyung-Shik;Kim, Jieun E.
    • Korean Journal of Biological Psychiatry
    • /
    • v.23 no.3
    • /
    • pp.108-115
    • /
    • 2016
  • Aggression and aggressive behaviors, often explained as harmful social interaction with the intention of hurting or inflicting damage upon another, have been considered as an adaptive mechanism from the evolutionary psychological point of view. However, various studies on aggression and aggressive behaviors have been done with psychopathological approach as the extreme aggressive behaviors may harm themselves and others at the same time. Recently, researchers have attempted to explain aggression in terms of neurobiological substrates rather than based on traditional psychopathological and/or behavioral concept. In this regard, there have been findings of differences in neurotransmitters and their receptors, and genetic polymorphisms. In this review article, we provide a brief overview of the literature about seven most frequently reported neurotransmitters including neurohormones (serotonin, norepinephrine, dopamine, gamma-aminobutyric acid, nitric oxide, oxytocin and vasopressin) and an associated enzyme (monoamine oxidase A), which are known to be related with aggression and aggressive behaviors.

Quinpirole Increases Melatonin-Augmented Pentobarbital Sleep via Cortical ERK, p38 MAPK, and PKC in Mice

  • Hong, Sa-Ik;Kwon, Seung-Hwan;Hwang, Ji-Young;Ma, Shi-Xun;Seo, Jee-Yeon;Ko, Yong-Hyun;Kim, Hyoung-Chun;Lee, Seok-Yong;Jang, Choon-Gon
    • Biomolecules & Therapeutics
    • /
    • v.24 no.2
    • /
    • pp.115-122
    • /
    • 2016
  • Sleep, which is an essential part of human life, is modulated by neurotransmitter systems, including gamma-aminobutyric acid (GABA) and dopamine signaling. However, the mechanisms that initiate and maintain sleep remain obscure. In this study, we investigated the relationship between melatonin (MT) and dopamine D2-like receptor signaling in pentobarbital-induced sleep and the intracellular mechanisms of sleep maintenance in the cerebral cortex. In mice, pentobarbital-induced sleep was augmented by intraperitoneal administration of 30 mg/kg MT. To investigate the relationship between MT and D2-like receptors, we administered quinpirole, a D2-like receptor agonist, to MT- and pentobarbital-treated mice. Quinpirole (1 mg/kg, i.p.) increased the duration of MT-augmented sleep in mice. In addition, locomotor activity analysis showed that neither MT nor quinpirole produced sedative effects when administered alone. In order to understand the mechanisms underlying quinpirole-augmented sleep, we measured protein levels of mitogen-activated protein kinases (MAPKs) and cortical protein kinases related to MT signaling. Treatment with quinpirole or MT activated extracellular-signal-regulated kinase 1 and 2 (ERK1/2), p38 MAPK, and protein kinase C (PKC) in the cerebral cortex, while protein kinase A (PKA) activation was not altered significantly. Taken together, our results show that quinpirole increases the duration of MT-augmented sleep through ERK1/2, p38 MAPK, and PKC signaling. These findings suggest that modulation of D2-like receptors might enhance the effect of MT on sleep.

Administration of Alphas1-Casein Hydrolysate Increases Sleep and Modulates GABAA Receptor Subunit Expression

  • Yayeh, Taddesse;Leem, Yea-Hyun;Kim, Kyung-Mi;Jung, Jae-Chul;Schwarz, Jessica;Oh, Ki-Wan;Oh, Seikwan
    • Biomolecules & Therapeutics
    • /
    • v.26 no.3
    • /
    • pp.268-273
    • /
    • 2018
  • Sleep is the most basic and essential physiological requirement for mental health, and sleep disorders pose potential risks of metabolic and neurodegenerative diseases. Tryptic hydrolysate of ${\alpha}_{S1}$-casein (${\alpha}_{S1}-CH$) has been shown to possess stress relieving and sleep promoting effects. However, the differential effects of ${\alpha}_{S1}-CH$ on electroencephalographic wave patterns and its effects on the protein levels of ${\gamma}$-aminobutyric acid A ($GABA_A$) receptor subtypes in hypothalamic neurons are not well understood. We found ${\alpha}_{S1}-CH$ (120, 240 mg/kg) increased sleep duration in mice and reduced sleep-wake cycle numbers in rats. While ${\alpha}_{S1}-CH$ (300 mg/kg) increased total sleeping time in rats, it significantly decreased wakefulness. In addition, electroencephalographic theta (${\theta}$) power densities were increased whereas alpha (${\alpha}$) power densities were decreased by ${\alpha}_{S1}-CH$ (300 mg/kg) during sleep-wake cycles. Furthermore, protein expressions of $GABA_A$ receptor ${\beta}_1$ subtypes were elevated in rat hypothalamus by ${\alpha}_{S1}-CH$. These results suggest ${\alpha}_{S1}-CH$, through $GABA_A$ receptor modulation, might be useful for treating sleep disorders.

Gene Transcription in the Leaves of Rice Undergoing Salt-induced Morphological Changes (Oryza sativa L.)

  • Kim, Dea-Wook;Shibato, Junko;Agrawal, Ganesh Kumar;Fujihara, Shinsuke;Iwahashi, Hitoshi;Kim, Du Hyun;Shim, Ie-Sung;Rakwal, Randeep
    • Molecules and Cells
    • /
    • v.24 no.1
    • /
    • pp.45-59
    • /
    • 2007
  • We describe the gene expression profile of third leaves of rice (cv. Nipponbare) seedlings subjected to salt stress (130 mM NaCl). Transcripts of Mn-SOD, Cu/Zn-SOD, cytosolic and stromal APX, GR and CatB were up-regulated, whereas expression of thylakoid-bound APX and CatA were down-regulated. The levels of the compatible solute proline and of transcripts of its biosynthetic gene, ${\Delta}^1$-pyrroline-5-carboxylate synthetase (P5CS), were strongly increased by salt stress. Interestingly, a potential compatible solute, ${\gamma}$-aminobutyric acid (GABA), was also found to be strongly induced by salt stress along with marked up-regulation of transcripts of GABA-transaminase. A dye-swap rice DNA microarray analysis identified a large number of genes whose expression in third leaves was altered by salt stress. Among 149 genes whose expression was altered at all the times assayed (3, 4 and 6 days) during salt stress, there were 47 annotated novel genes and 76 unknown genes. These results provide new insight into the effect of salt stress on the expression of genes related to antioxidant enzymes, proline and GABA as well as of genes in several functional categories.

Striatal Glutamate and GABA after High Frequency Subthalamic Stimulation in Parkinsonian Rat

  • Lee, Kyung Jin;Shim, Insop;Sung, Jae Hoon;Hong, Jae Taek;Kim, Il sup;Cho, Chul Bum
    • Journal of Korean Neurosurgical Society
    • /
    • v.60 no.2
    • /
    • pp.138-145
    • /
    • 2017
  • Objective : High frequency stimulation (HFS) of the subthalamic nucleus (STN) is recognized as an effective treatment of advanced Parkinson's disease. However, the neurochemical basis of its effects remains unknown. The aim of this study is to investigate the effects of STN HFS in intact and 6-hydroxydopamine (6-OHDA)-lesioned hemiparkinsonian rat model on changes of principal neurotransmitters, glutamate, and gamma-aminobutyric acid (GABA) in the striatum. Methods : The authors examined extracellular glutamate and GABA change in the striatum on sham group, 6-OHDA group, and 6-OHDA plus deep brain stimulation (DBS) group using microdialysis methods. Results : High-pressure liquid chromatography was used to quantify glutamate and GABA. The results show that HFS-STN induces a significant increase of extracellular glutamate and GABA in the striatum of 6-OHDA plus DBS group compared with sham and 6-OHDA group. Conclusion : Therefore, the clinical results of STN-HFS are not restricted to the direct STN targets but involve widespread adaptive changes within the basal ganglia.

Sedative-Hypnotic and Receptor Binding Studies of Fermented Marine Organisms

  • Joung, Hye-Young;Kang, Young Mi;Lee, Bae-Jin;Chung, Sun Yong;Kim, Kyung-Soo;Shim, Insop
    • Biomolecules & Therapeutics
    • /
    • v.23 no.5
    • /
    • pp.479-485
    • /
    • 2015
  • This study was performed to investigate the sedative-hypnotic activity of ${\gamma}$-aminobutyric acid (GABA)-enriched fermented marine organisms (FMO), including sea tangle (FST) and oyster (FO) by Lactobacillus brevis BJ20 (L. brevis BJ20). FST and FO were tested for their binding activity of the $GABA_A$-benzodiazepine and 5-$HT_{2C}$ receptors, which are well-known molecular targets for sleep aids. We also measured the sleep latency and sleep duration during pentobarbital-induced sleep in mice after oral administration of FST and FO. In $GABA_A$ and 5-$HT_{2C}$ receptor binding assays, FST displayed an effective concentration-dependent binding affinity to $GABA_A$ receptor, similar to the binding affinity to 5-$HT_{2C}$ receptor. FO exhibited higher affinity to 5-$HT_{2C}$ receptor, compared with the $GABA_A$ receptor. The oral administration of FST and FO produced a dose-dependent decrease in sleep latency and increase in sleep duration in pentobarbital-induced hypnosis. The data demonstrate that FST and FO possess sedativehypnotic activity possibly by modulating $GABA_A$ and 5-$HT_{2C}$ receptors. We propose that FST and FO might be effective agents for treatment of insomnia.