• Title/Summary/Keyword: ${\gamma}$-ray Detector

Search Result 263, Processing Time 0.03 seconds

Calculation of the Correction Factors related to the Diameter and Density of the Concrete Core Samples using a Monte Carlo Simulation (몬테카를로 전산해석을 이용한 콘크리트 코어시료의 직경과 밀도에 따른 보정인자 계산)

  • Lee, Kyu-Young;Kang, Bo Sun
    • Journal of the Korean Society of Radiology
    • /
    • v.14 no.5
    • /
    • pp.503-510
    • /
    • 2020
  • Concrete is one of the most widely used materials as the shielding structures of a nuclear facilities. It is also the most generated radioactive waste in quantity while dismantling facilities. Since the concrete captures neutrons and generates various radionuclides, radiation measurement and analysis of the sample was fulfilled prior to dismantle facilities. An HPGe detector is used in general for the radiation measurement, and effective correction factors such as geometrical correction factor, self-absorption correction, and absolute detector efficiency have to be applied to the measured data to decide exact radioactivity of the sample. Correction factors are obtained by measuring data using a standard source with the same geometry and chemical states as the sample under the same measurement conditions. However, it is very difficult to prepare standard concrete sources because concrete is limited in pretreatment due to various constituent materials and high density. In addition, the concrete sample obtained by core drill is a volumetric source, which requires geometric correction for sample diameter and self absorption correction for sample density. Therefore in recent years, many researchers are working on the calculation of effective correction factors using Monte carlo simulation instead of measuring them using a standard source. In this study we calculated, using Geant4, one of the Monte carlo codes, the correction factors for the various diameter and density of the concrete core sample at the gamma ray energy emitted from the nuclides 152Eu and 60Co, which are the most generated in radioactive concrete.

Design of a Depth Encoding Detector using Light Guides with Different Reflector Patterns for Each Layer (각 층별 반사체 패턴이 서로 다른 광가이드를 사용한 반응 깊이 측정 검출기 설계)

  • Seung-Jae, Lee
    • Journal of the Korean Society of Radiology
    • /
    • v.17 no.1
    • /
    • pp.31-36
    • /
    • 2023
  • Among imaging and treatment devices for small animals, positron emission tomography(PET) causes a change in spatial resolution within a field of view. This is a phenomenon caused by using a small gantry and a thin and long scintillation pixel, and detectors that measure the interaction depth are being developed and researched to solve this problem. In this study, a detector that measures the interaction depth was designed using several scintillator blocks and light guides with different reflector patterns. The scintillator block composed of 4 × 4 arrays of 3 mm × 3 mm × 5 mm scintillation pixels formed four layers, and a light guide was inserted in each layer to configure the entire detector. In order to check whether the interaction depth was measured, a gamma ray interaction was generated at the center of all scintillation pixels to acquire data and then reconstructed into a flood image. The reflector patterns of the light guides inserted between the layers were all different, so the positions of the scintillation pixels for each layer were formed in different locations. It is considered that even spatial resolution can be achieved over all regions of the field of view if all positions of the scintillation pixels thus formed are separated and used for image reconstruction.

Efficient Verification of X-ray Target Replacement for the C-series High Energy Linear Accelerator

  • Cho, Jin Dong;Chun, Minsoo;Son, Jaeman;An, Hyun Joon;Yoon, Jeongmin;Choi, Chang Heon;Kim, Jung-in;Park, Jong Min;Kim, Jin Sung
    • Progress in Medical Physics
    • /
    • v.29 no.3
    • /
    • pp.92-100
    • /
    • 2018
  • The manufacturer of a linear accelerator (LINAC) has reported that the target melting phenomenon could be caused by a non-recommended output setting and the excessive use of monitor unit (MU) with intensity-modulated radiation therapy (IMRT). Due to these reasons, we observed an unexpected beam interruption during the treatment of a patient in our institution. The target status was inspected and a replacement of the target was determined. After the target replacement, the beam profile was adjusted to the machine commissioning beam data, and the absolute doses-to-water for 6 MV and 10 MV photon beams were calibrated according to American Association of Physicists in Medicine (AAPM) Task Group (TG)-51 protocol. To verify the beam data after target replacement, the beam flatness, symmetry, output factor, and percent depth dose (PDD) were measured and compared with the commissioning data. The difference between the referenced and measured data for flatness and symmetry exhibited a coincidence within 0.3% for both 6 MV and 10 MV, and the difference of the PDD at 10 cm depth ($PDD_{10}$) was also within 0.3% for both photon energies. Also, patient-specific quality assurances (QAs) were performed with gamma analysis using a 2-D diode and ion chamber array detector for eight patients. The average gamma passing rates for all patients for the relative dose distribution was $99.1%{\pm}1.0%$, and those for absolute dose distribution was $97.2%{\pm}2.7%$, which means the gamma analysis results were all clinically acceptable. In this study, we recommend that the beam characteristics, such as beam profile, depth dose, and output factors, should be examined. Further, patient-specific QAs should be performed to verify the changes in the overall beam delivery system when a target replacement is inevitable; although it is more important to check the beam output in a daily routine.

Performance Measurement of SMT(Slewing Mirror Telescope) Optical System

  • Ahn, Ki-Beom;Jeong, Soo-Min;Kim, Ji-Eun;Kim, Sug-Whan;Lee, Jik;Lim, Heui-Jin;Lindere, V.;Nam, Ji-Woo;Nam, Koo-Hyun;Park, Il-H.;Smoot, G.F.
    • Bulletin of the Korean Space Science Society
    • /
    • 2011.04a
    • /
    • pp.23.1-23.1
    • /
    • 2011
  • The SMT is a subsystem of the UFFO (Ultra-Fast Flash Observatory) pathfinder onboard the Lomonosov spacecraft planed to be launched in November 2011. The UFFO is designed for extremely fast observation of optical afterglow of Gamma Ray Burst (GRB). This study is primarily concerned with performance measurement of the SMT optical system under the integration and test phase. SMT is a 100mm Ritchey-Chretien type telescope with a motorized slewing mirror and a $256{\times}256$ pixels Intensified Charge-Coupled Device (ICCD) of 22.2${\mu}m$ in pixel size. SMT is designed to operate over the wavelength coverage between 200 nm and 650 nm. It has 17 arcmin FOV (Field of View), providing 4arcsec in detector pixel resolution. In this study, we describe the integration and test process of the SMT optical system and interim performance measurement results with motorized slewing mirror and ICCD.

  • PDF

A Simultaneous Determination of Chromium, Iron, Lanthanum, Scandium and Zinc in River Water by Neutron Activation (중성자 방사화에 의한 시료중의 크롬, 철, 란탄, 스칸듐 및 아연의 동시정량)

  • Lee Ihn Chong;Kim Si-Joong;Lee Chul
    • Journal of the Korean Chemical Society
    • /
    • v.21 no.6
    • /
    • pp.427-433
    • /
    • 1977
  • A neutron activation method has been developed for the simultaneous determination of chromium, iron, lanthanum, scandium and zinc in river-water samples. The sample is sealed in the silica ampoule without pretreatment and irradiated for a week at a thermal neutron flux of $1{\times}10^{13}n{\cdot}cm^{-2}{\cdot}sec^{-1}$. After cooling for about two days, the elements in the sample are sequentially extracted at different pH by 0.1M oxine-chloroform solution. The organic layers are checked by Gamma-ray spectrometry with $″3\;{\times}\;3″$ NaI (T1) detector connected to a 800-channel pulse hight analyzer. The ppb concentration of the elements in most of river-water samples could be determined by this method. The tracer study for the quantitative separation of the elements was also carried out.

  • PDF

The Study for the Fast Detection of the Stereo Radiation Detector using the Image Processing (영상처리기반 스테레오 감마선 탐지장치의 고속탐지에 관한 연구)

  • Hwang, Young-gwan;Lee, Nam-ho
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2015.10a
    • /
    • pp.1103-1105
    • /
    • 2015
  • Leaked Radioactive source in nuclear power station, radiation related facilities and the aging nuclear power plant for the dismantling must need to detect and remove early to prevent major accidents. In this paper, we implemented a single sensor-based gamma-ray detectors stereo which can provide the distance to the radiation source, a direction and doserate information for fast and efficient decontamination work the radiation source. And we have carried out an algorithm development for high-speed detection of the detection equipment. Two detectors are required for stereo structure for obtaining the distance information of the radioactive source, but we designed the only sensor-based detection device for the weight reduction. We have extracted the region of interest and obtained the distance calculation result and distribution of radiation source in order to minimize a stereo image acquisition time. Detection time of the algorithm showed a shorter time of about 41%.

  • PDF

A Numerical Study of Different Types of Collimators for a High-Resolution Preclinical CdTe Pixelated Semiconductor SPECT System

  • Jeong, Hyun-Woo;Kim, Jong Seok;Bae, Se Young;Seo, Kanghyen;Kim, Seung Hun;Kang, Seong Hyeon;Shin, Dong Jin;Lee, Chang-Lae;Kim, Kyuseok;Lee, Youngjin
    • Journal of the Optical Society of Korea
    • /
    • v.20 no.6
    • /
    • pp.663-668
    • /
    • 2016
  • In single-photon-emission computed tomography (SPECT) with a pixelated semiconductor detector (PSD), not only pinhole collimators but also parallel-hole collimators are often used in preclinical nuclear-medicine imaging systems. The purpose of this study was to evaluate and compare pinhole and parallel-hole collimators in a PSD. For that purpose, we paired a PID 350 (Ajat Oy Ltd., Finland) CdTe PSD with each of the four collimators most frequently used in preclinical nuclear medicine: (1) a pinhole collimator, and (2) low-energy high-resolution (LEHR), (3) low-energy general-purpose (LEGP), and (4) low-energy high-sensitivity (LEHS) parallel-hole collimators. The sensitivity and spatial resolution of each collimator was evaluated using a point source and a hot-rod phantom. The highest sensitivity was achieved using LEHS, followed by LEGP, LEHR, and pinhole. Also, at a source-to-collimator distance of 2 cm, the spatial resolution was 1.63, 2.05, 2.79, and 3.45 mm using pinhole, LEHR, LEGP, and LEHS, respectively. The reconstructed hot-rod phantom images showed that the pinhole collimator and the LEHR parallel-hole collimator give a fine spatial resolution for preclinical SPECT with PSD. In conclusion, we successfully compared different types of collimators for a preclinical pixelated semiconductor SPECT system.

GRAVITATIONAL WAVES AND ASTRONOMY (중력파와 천문학)

  • Lee, Hyung-Mok;Lee, Chang-Hwan;Kang, Gung-Won;Oh, John-J.;Kim, Chung-Lee;Oh, Sang-Hoon
    • Publications of The Korean Astronomical Society
    • /
    • v.26 no.2
    • /
    • pp.71-87
    • /
    • 2011
  • Gravitational waves are predicted by the Einstein's theory of General Relativity. The direct detection of gravitational waves is one of the most challenging tasks in modern science and engineering due to the 'weak' nature of gravity. Recent development of the laser interferometer technology, however, makes it possible to build a detector on Earth that is sensitive up to 100-1000 Mpc for strong sources. It implies an expected detection rate of neutron star mergers, which are one of the most important targets for ground-based detectors, ranges between a few to a few hundred per year. Therefore, we expect that the gravitational-wave observation will be routine within several years. Strongest gravitational-wave sources include tight binaries composed of compact objects, supernova explosions, gamma-ray bursts, mergers of supermassive black holes, etc. Together with the electromagnetic waves, the gravitational wave observation will allow us to explore the most exotic nature of astrophysical objects as well as the very early evolution of the universe. This review provides a comprehensive overview of the theory of gravitational waves, principles of detections, gravitational-wave detectors, astrophysical sources of gravitational waves, and future prospects.

Serial line multiplexing method based on bipolar pulse for PET

  • Kim, Yeonkyeong;Choi, Yong;Kim, Kyu Bom;Leem, Hyuntae;Jung, Jin Ho
    • Nuclear Engineering and Technology
    • /
    • v.53 no.11
    • /
    • pp.3790-3797
    • /
    • 2021
  • Although the individual channel readout method can improve the performance of PET detectors with pixelated photo-sensors, such as silicon photomultiplier (SiPM), this method leads to a significant increase in the number of readout channels. In this study, we proposed a novel multiplexing method that could effectively reduce the number of readout channels to reduce system complexity and development cost. The proposed multiplexing circuit was designed to generate bipolar pulses with different zero-crossing points by adjusting the time constant of the high-pass filter connected to each channel of a pixelated photo-sensor. The channel position of the detected gamma-ray was identified by estimating the width between the rising edge and the zero-crossing point of the bipolar pulse. In order to evaluate the performance of the proposed multiplexing circuit, four detector blocks, each consisting of a 4 × 4 array of 3 mm × 3 mm × 20 mm LYSO and a 4 × 4 SiPM array, were constructed. The average energy resolution was 13.2 ± 1.1% for all 64 crystal pixels and each pixel position was accurately identified. A coincidence timing resolution was 580 ± 12 ps. The experimental results indicated that the novel multiplexing method proposed in this study is able to effectively reduce the number of readout channels while maintaining accurate position identification with good energy and timing performance. In addition, it could be useful for the development of PET systems consisting of a large number of pixelated detectors.

Assessment of radionuclides from coal-fired brick kilns on the outskirts of Dhaka city and the consequent hazards on human health and the environment

  • M.M. Mahfuz Siraz;M.D.A. Rakib;M.S. Alam;Jubair Al Mahmud;Md Bazlar Rashid;Mayeen Uddin Khandaker;Md. Shafiqul Islam;S. Yeasmin
    • Nuclear Engineering and Technology
    • /
    • v.55 no.8
    • /
    • pp.2802-2811
    • /
    • 2023
  • In a first-of-its-kind study, terrestrial radionuclide concentrations were measured in 35 topsoil samples from the outskirts of Dhaka using HPGe gamma-ray spectrometry to assess the radiological consequences of such a vast number of brick kilns on the plant workers, general as well as dwelling environment. The range of activity concentrations of 226Ra, 232Th, and 40K is found at 19 ± 3.04 to 38 ± 4.94, 39 ± 5.85 to 57 ± 7.41, and (430 ± 51.60 to 570 ± 68.40) Bq/kg, respectively. 232Th and 40K concentrations were higher than the global averages. Bottom ash deposition in lowlands, fly ash buildup in soils, and the fallout of micro-particles are all probable causes of the elevated radioactivity levels. 137Cs was found in the sample, which indicates the migration of 137Cs from nuclear accidents or nuclear fallout, or the contamination of feed coal. Although the effective dose received by the general public was below the recommended dose limit but, most estimates of hazard parameters surpass their respective population weighted global averages, indicating that brick kiln workers and nearby residents are not safe due to prolonged exposures to terrestrial radiation. In addition, the soil around sampling sites is found to be unsuitable for agricultural purposes.