DOI QR코드

DOI QR Code

Assessment of radionuclides from coal-fired brick kilns on the outskirts of Dhaka city and the consequent hazards on human health and the environment

  • M.M. Mahfuz Siraz (Health Physics Division, Atomic Energy Centre) ;
  • M.D.A. Rakib (Department of Nuclear Engineering, University of Dhaka) ;
  • M.S. Alam (Department of Nuclear Engineering, University of Dhaka) ;
  • Jubair Al Mahmud (Department of Nuclear Engineering, University of Dhaka) ;
  • Md Bazlar Rashid (Geological Survey of Bangladesh) ;
  • Mayeen Uddin Khandaker (Department of General Educational Development, Faculty of Science and Information Technology, Daffodil International University) ;
  • Md. Shafiqul Islam (Department of Nuclear Engineering, University of Dhaka) ;
  • S. Yeasmin (Health Physics Division, Atomic Energy Centre)
  • Received : 2023.01.08
  • Accepted : 2023.04.29
  • Published : 2023.08.25

Abstract

In a first-of-its-kind study, terrestrial radionuclide concentrations were measured in 35 topsoil samples from the outskirts of Dhaka using HPGe gamma-ray spectrometry to assess the radiological consequences of such a vast number of brick kilns on the plant workers, general as well as dwelling environment. The range of activity concentrations of 226Ra, 232Th, and 40K is found at 19 ± 3.04 to 38 ± 4.94, 39 ± 5.85 to 57 ± 7.41, and (430 ± 51.60 to 570 ± 68.40) Bq/kg, respectively. 232Th and 40K concentrations were higher than the global averages. Bottom ash deposition in lowlands, fly ash buildup in soils, and the fallout of micro-particles are all probable causes of the elevated radioactivity levels. 137Cs was found in the sample, which indicates the migration of 137Cs from nuclear accidents or nuclear fallout, or the contamination of feed coal. Although the effective dose received by the general public was below the recommended dose limit but, most estimates of hazard parameters surpass their respective population weighted global averages, indicating that brick kiln workers and nearby residents are not safe due to prolonged exposures to terrestrial radiation. In addition, the soil around sampling sites is found to be unsuitable for agricultural purposes.

Keywords

References

  1. I. Akkurt, B. Mavi, H. Akyldrm, K. Gunoglu, Natural radioactivity of coals and its risk assessment, Int. J. Phys. Sci. 4 (2009) 403-406, https://doi.org/10.5897/IJPS.9000391.
  2. M.A. Habib, R. Khan, K. Phoungthong, Evaluation of environmental radioactivity in soils around a coal burning power plant and a coal mining area in Barapukuria, Bangladesh: radiological risks assessment, Chem. Geol. 600 (2022), 120865, https://doi.org/10.1016/j.chemgeo.2022.120865.
  3. Z. Vukovic, M. Mandic, D. Vukovic, Natural radioactivity of ground waters and soil in the vicinity of the ash repository of the coal-fired power plant "Nikola Tesla" A-obrenovac (Yugoslavia), J. Environ. Radioact. 33 (1996) 41-48, https://doi.org/10.1016/0265-931X(95)00067-K.
  4. S. Dragovic, M. Cujic, L. Slavkovic-Be skoski, B. Gajic, B. Bajat, M. Kilibarda, A. Onjia, Trace element distribution in surface soils from a coal burning power production area: a case study from the largest power plant site in Serbia, Catena 104 (2013) 288e296, https://doi.org/10.1016/J.CATENA.2012.12.004.
  5. J.A. Galhardi, R. Garcia-Tenorio, D.M. Bonotto, I. Diaz Frances, J.G. Motta, Natural radionuclides in plants, soils and sediments affected by U-rich coal mining activities in Brazil, J. Environ. Radioact. 177 (2017) 37-47, https://doi.org/10.1016/J.JENVRAD.2017.06.001.
  6. A.M.A. Seid, S. Turhan, A. Kurnaz, T.K. Bakir, A. Hancerliogullari, Radon concentration of different brands of bottled natural mineral water commercially sold in Turkey and radiological risk assessment, Int. J. Environ. Anal. Chem. 102 (2022) 7469-7481, https://doi.org/10.1080/03067319.2020.1830989.
  7. S. Turhan, Evaluation of agricultural soil radiotoxic element pollution around a lignite-burning thermal power plant, Radiochim. Acta 108 (2019) 77-85, https://doi.org/10.1515/RACT-2018-3051/MACHINEREADABLECITATION/RIS.
  8. E. Charro, V. Pena, Environmental impact of natural radionuclides from a coal-fired power plant in Spain, Radiat. Protect. Dosim. 153 (2013) 485-495, https://doi.org/10.1093/RPD/NCS126.
  9. F. Noli, P. Tsamos, S. Stoulos, Spatial and seasonal variation of radionuclides in soils and waters near a coal-fired power plant of Northern Greece: environmental dose assessment, J. Radioanal. Nucl. Chem. 311 (2017) 331-338, https://doi.org/10.1007/S10967-016-5082-0/METRICS.
  10. R. Khan, M.S. Parvez, U. Tamim, S. Das, M.A. Islam, K. Naher, M.H.R. Khan, F. Nahid, S.M. Hossain, Assessment of rare earth elements, Th and U profile of a site for a potential coal based power plant by instrumental neutron activation analysis, Radiochim. Acta 106 (2018) 515-524, https://doi.org/10.1515/RACT-2017-2867/MACHINEREADABLECITATION/RIS.
  11. M.A. Habib, T. Basuki, S. Miyashita, W. Bekelesi, S. Nakashima, K. Techato, R. Khan, A.B.K. Majlis, K. Phoungthong, Assessment of natural radioactivity in coals and coal combustion residues from a coal-based thermoelectric plant in Bangladesh: implications for radiological health hazards, Environ. Monit. Assess. 191 (2019) 27, https://doi.org/10.1007/s10661-018-7160-y.
  12. A.A. Sabuti, C.A.R. Mohamed, Activity levels of 210Po in the Coastal Area of Kapar, Malaysia, close to a coal-fired power plant, Sains Malays. 41 (2012) 815-828.
  13. Y.M. Amin, M. Uddin Khandaker, A.K.S. Shyen, R.H. Mahat, R.M. Nor, D.A. Bradley, Radionuclide emissions from a coal-fired power plant, Appl. Radiat. Isot. 80 (2013) 109-116, https://doi.org/10.1016/j.apradiso.2013.06.014.
  14. R. Kaushik, F. Khaliq, M. Subramaneyaan, R.S. Ahmed, Pulmonary dysfunctions, oxidative stress and DNA damage in brick kiln workers, Hum. Exp. Toxicol. 31 (2012) 1083-1091, https://doi.org/10.1177/0960327112450899.
  15. R.B. Finkelman, W. Orem, V. Castranova, C.A. Tatu, H.E. Belkin, B. Zheng, H.E. Lerch, S.V. Maharaj, A.L. Bates, Health impacts of coal and coal use: possible solutions, Int. J. Coal Geol. 50 (2002) 425-443, https://doi.org/10.1016/S0166-5162(02)00125-8.
  16. S. Buchanan, E. Burt, P. Orris, Beyond black lung: scientific evidence of health effects from coal use in electricity generation, J. Publ. Health Pol. 35 (2014) 266-277, https://doi.org/10.1057/jphp.2014.16.
  17. I. Demir, I. Kursun, Investigation of radioactive contents of Manisa-Soma and Istambul-Agacli coals (Turkey), Physicochem. Probl. Miner. Process. 48 (2012) 341-353, https://doi.org/10.5277/ppmp120202.
  18. M.E. Emirhan, C.S. Ozben, Assessment of radiological risk factors in the Zonguldak coal mines, Turkey, J. Radiol. Prot. 29 (2009) 527, https://doi.org/10.1088/0952-4746/29/4/007.
  19. M.J. Abedin, M.R. Karim, S. Hossain, N. Deb, M. Kamal, M.H.A. Miah, M.U. Khandaker, Spatial distribution of radionuclides in agricultural soil in the vicinity of a coal-fired brick kiln, Arabian J. Geosci. 12 (2019), https://doi.org/10.1007/s12517-019-4355-7.
  20. M. Khisroon, A. Khan, M. Imran, F. Zaidi, F. Ahmadullah, S.H. Fatima, Biomonitoring of DNA damage in individuals exposed to brick kiln pollution from Peshawar, Khyber Pakhtunkhwa, Pakistan, Arch. Environ. Occup. Health 73 (2018) 115-120, https://doi.org/10.1080/19338244.2017.1304881.
  21. R. Budhwar, V. Bihari, N. Mathur, A. Srivastava, S. Kumar, DNA-protein crosslinks as a biomarker of exposure to solar radiations: a preliminary study in brick-kiln workers, Biomarkers 8 (2003) 162-166, https://doi.org/10.1080/1354750031000067495.
  22. UNSCEAR, Sources and Effects of Ionizing Radiation Report to the General Assembly with Scientific Annexes, Annex-B, New York, 2000.
  23. B. Skoko, G. Marovic, D. Babic, M. So staric, M. Jukic, Plant uptake of 238U, 235U, 232Th, 226Ra, 210Pb and 40K from a coal ash and slag disposal site and control soil under field conditions: a preliminary study, J. Environ. Radioact. 172 (2017) 113-121, https://doi.org/10.1016/j.jenvrad.2017.03.011.
  24. M. Cujic, S. Dragovic, M. ÐorCevic, R. Dragovic, B. Gajic, S. Miljanic, Radionuclides in the soil around the largest coal-fired power plant in Serbia: radiological hazard, relationship with soil characteristics and spatial distribution, Environ. Sci. Pollut. Res. 22 (2015) 10317-10330, https://doi.org/10.1007/s11356-014-3888-2.
  25. A. Baeza, J.A. Corbacho, J. Guillen, A. Salas, J.C. Mora, B. Robles, D. Cancio, Enhancement of natural radionuclides in the surroundings of the four largest coal-fired power plants in Spain, J. Environ. Monit. 14 (2012) 1064-1072, https://doi.org/10.1039/C2EM10991C.
  26. G. DoE, National Strategy for Sustainable Brick Production in Bangladesh, 2017, p. 41. http://ccacoalition.org/sites/default/files/resources/2017_strategy-brick-production-bangladesh.pdf.
  27. S.E. Haque, M.M. Shahriar, N. Nahar, M.S. Haque, Impact of brick kiln emissions on soil quality: a case study of Ashulia brick kiln cluster, Bangladesh, Environ. Challenges. 9 (2022), 100640, https://doi.org/10.1016/J.ENVC.2022.100640.
  28. M. Flues, V. Moraes, B.P. Mazzilli, The influence of a coal-fired power plant operation on radionuclide concentrations in soil, J. Environ. Radioact. 63 (2002) 285-294, https://doi.org/10.1016/S0265-931X(02)00035-8.
  29. U. Cevik, N. Damla, S. Nezir, Radiological characterization of Cayirhan coal-fired power plant in Turkey, Fuel 86 (2007) 2509-2513, https://doi.org/10.1016/j.fuel.2007.02.013.
  30. H.V. Papaefthymiou, M. Manousakas, A. Fouskas, G. Siavalas, Spatial and vertical distribution and risk assessment of natural radionuclides in soils surrounding the lignite-fired power plants in megalopolis basin, Greece, Radiat. Protect. Dosim. 156 (2013) 49-58, https://doi.org/10.1093/rpd/nct037.
  31. A. Cayir, M. Belivermis, O. Kilic, M. Coskun, M. Coskun, Heavy metal and radionuclide levels in soil around Afsin-Elbistan coal-fired thermal power plants, Turkey, Environ. Earth Sci. 67 (2012) 1183-1190, https://doi.org/10.1007/s12665-012-1561-y.
  32. A. Al, G.S. of B. Alam, Md Khurshid, A.K.M. Shahidul Hasan, Mujibur Rahman Khan, John W. Whitney, S.K.M. Abdullah, James E. Queen, Geological Survey (U.S.), Office of Scientific Publications, Geological map of Bangladesh, Geological Survey of Bangladesh, 1990.
  33. M.B. Rashid, M.A. Habib, R. Khan, A.R.M.T. Islam, Land transform and its consequences due to the route change of the Brahmaputra River in Bangladesh, Int. J. River Basin Manag. 21 (2021) 1-13, https://doi.org/10.1080/15715124.2021.1938095.
  34. M.B. Rashid, Channel bar development and bankline migration of the Lower Padma River of Bangladesh, Arabian J. Geosci. 13 (2020) 612, https://doi.org/10.1007/s12517-020-05628-9.
  35. M.B. Rashid, M.A. Habib, Channel bar development, braiding and bankline migration of the Brahmaputra-Jamuna river, Bangladesh through RS and GIS techniques, Int. J. River Basin Manag. (2022) 1-13, https://doi.org/10.1080/15715124.2022.2118281.
  36. U. Barnekow, S. Fesenko, V. Kashparov, G. KisBenedek, G. Matisoff, Y. Onda, N. Sanzharova, S. Tarjan, A. Tyler, B. Varga, Guidelines on Soil and Vegetation Sampling for Radiological Monitoring Technical Reports Series No. 486, IAEA, Vienna, Austria, 2019.
  37. S. Amatullah, R. Rahman, J. Ferdous, M.M.M. Siraz, M.U. Khandaker, S.F. Mahal, Assessment of radiometric standard and potential health risks from building materials used in Bangladeshi dwellings, Int. J. Environ. Anal. Chem. (2021) 1-13, https://doi.org/10.1080/03067319.2021.1907361.
  38. International Atomic Energy Agency, Measurement of Radionuclides in Food and the Environment, Technical Reports Series No. 295, Vienna, Austria, 1989.
  39. M.S.D. Sarker, R. Rahman, M.M.M. Siraz, M.U. Khandaker, S. Yeasmin, The presence of primordial radionuclides in powdered milk and estimation of the concomitant ingestion dose, Radiat. Phys. Chem. 188 (2021), 109597, https://doi.org/10.1016/j.radphyschem.2021.109597.
  40. M.U. Khandaker, O.B. Uwatse, K.A. Bin Shamsul Khairi, M.R.I. Faruque, D.A. Bradley, Terrestrial radionuclides in surface (dam) water and concomitant dose in metropolitan Kuala Lumpur, Radiat. Protect. Dosim. 185 (2019) 343-350, https://doi.org/10.1093/RPD/NCZ018.
  41. K. Asaduzzaman, F. Mannan, M. Uddin Khandaker, M. Salihu Farook, A. Elkezza, Y. Bin Mohd Amin, S. Sharma, H. Bin Abu Kassim, Assessment of natural radioactivity levels and potential radiological risks of common building materials used in Bangladeshi dwellings, PLoS One 10 (2015), 140667, https://doi.org/10.1371/journal.pone.0140667.
  42. M.U. Khandaker, N. Adillah, B. Heffny, Y.M. Amin, D.A. Bradley, Elevated concentration of radioactive potassium in edible algae cultivated in Malaysian seas and estimation of ingestion dose to humans, Algal Res. 38 (2019), 101386, https://doi.org/10.1016/j.algal.2018.101386.
  43. M.U. Khandaker, K. Asaduzzaman, A.F. Bin Sulaiman, D.A. Bradley, M.O. Isinkaye, Elevated concentrations of naturally occurring radionuclides in heavy mineral-rich beach sands of Langkawi Island, Malaysia, Mar. Pollut. Bull. 127 (2018) 654-663, https://doi.org/10.1016/j.marpolbul.2017.12.055.
  44. S. Yeasmin, S. Karmaker, A.M. Rahman, M.M.M. Siraz, M.S. Sultana, Measurement of radioactvity in soil and vegetable samples in the northern area of Madhupur upzila at tangail district in Bangladesh and assessment of assiociated radological, Bangladesh, J. Phys. 16 (2014) 49e58.
  45. M. Sarker, M.M.M. Siraz, M. Jafor Dewan, S. Pervin, A.F.M. Mizanur Rahman, S. Yeasmin, Measurement of radioactivity for the assessment of radiological risk in sand sample collected from kuakata and cox ' s bazar sea beach located in measurement of radioactivity for the assessment of radiological risk in sand sample collected from kuakata an, Dhaka Univ. J. Appl. Sci. Eng. 6 (2021) 52-57.
  46. M.M.M. Siraz, S. Pervin, S. Banik, A.K.M.M. Rahman, A.F.M.M. Rahman, S. Yeasmin, Estimation of radiation hazards from imported zirconium materials used in ceramic tiles industries in Bangladesh estimation of radiation hazards from imported zirconium materials used in ceramic tiles industries in Bangladesh, Nucl. Sci. Appl. 28 (1-2) (2020) 1-5.
  47. A. Sultana, M.M. Siraz, S. Pervin, A.M. Rahman, S.K. Das, S. Yeasmin, Assessment of radioactivity and radiological hazard of different food items collected from local market in Bangladesh, J. Bangladesh Acad. Sci. 43 (2020) 141-148, https://doi.org/10.3329/jbas.v43i2.45735.
  48. M.N. Aktar, S.K. Das, S. Yeasmin, M.M. Siraz, A.M. Rahman, Measurement of radioactivity and assessment of radiological hazard of tea samples collected from local market in Bangladesh, J. Bangladesh Acad. Sci. 42 (2018) 171-176, https://doi.org/10.3329/jbas.v42i2.40049.
  49. S. Yeasmin, M. Siraz, A. Faisal, S. Pervin, M.S. Sultana, Study of radioactivity in sand of a new beach zone at cox's bazar in the southern part of Bangladesh, in: Int. Conf. Phys. Sustain. Dev. Technol, 2015, pp. 91-96.
  50. M.A. Kobeissi, O. El-Samad, I. Rachidi, Health assessment of natural radioactivity and radon exhalation rate in granites used as buildingmaterials in Lebanon, Radiat. Protect. Dosim. 153 (2013) 342-351, https://doi.org/10.1093/rpd/ncs110.
  51. R. Ravisankar, J. Chandramohan, A. Chandrasekaran, J. Prince Prakash Jebakumar, I. Vijayalakshmi, P. Vijayagopal, B. Venkatraman, Assessments of radioactivity concentration of natural radionuclides and radiological hazard indices in sediment samples from the East coast of Tamilnadu, India with statistical approach, Mar. Pollut. Bull. 97 (2015) 419-430, https://doi.org/10.1016/j.marpolbul.2015.05.058.
  52. M.T. Kolo, S.A.B.A. Aziz, M.U. Khandaker, K. Asaduzzaman, Y.M. Amin, Evaluation of radiological risks due to natural radioactivity around Lynas Advanced Material Plant environment, Kuantan, Pahang, Malaysia, Environ. Sci. Pollut. Res. 22 (2015) 13127-13136, https://doi.org/10.1007/S11356-015-4577-5.
  53. Bangladesh Bureau of Statistics, Report on Agriculture and Rural Statistics 2018, 2019. Dhaka.
  54. R. Khan, M.S. Islam, A.R.M. Tareq, K. Naher, A.R.M.T. Islam, M.A. Habib, M.A.B. Siddique, M.A. Islam, S. Das, M.B. Rashid, A.K.M.A. Ullah, M.M.H. Miah, S.U. Masrura, M. Bodrud-Doza, M.R. Sarker, A.B.M. Badruzzaman, Distribution, sources and ecological risk of trace elements and polycyclic aromatic hydrocarbons in sediments from a polluted urban river in central Bangladesh, Environ. Nanotechnol. Monit. Manag. 14 (2020), https://doi.org/10.1016/j.enmm.2020.100318.
  55. M.A. Habib, T. Basuki, S. Miyashita, W. Bekelesi, S. Nakashima, K. Phoungthong, R. Khan, M.B. Rashid, A.R.M.T. Islam, K. Techato, Distribution of naturally occurring radionuclides in soil around a coal-based power plant and their potential radiological risk assessment, Radiochim. Acta 107 (2019) 243-259, https://doi.org/10.1515/ract-2018-3044.
  56. A. Faanu, O.K. Adukpo, L. Tettey-Larbi, H. Lawluvi, D.O. Kpeglo, E.O. Darko, G. Emi-Reynolds, R.A. Awudu, C. Kansaana, P.A. Amoah, A.O. Efa, A.D. Ibrahim, B. Agyeman, R. Kpodzro, L. Agyeman, Natural radioactivity levels in soils, rocks and water at a mining concession of Perseus gold mine and surrounding towns in Central Region of Ghana, SpringerPlus 5 (2016) 1-16, https://doi.org/10.1186/s40064-016-1716-5.
  57. D. Roy, M.M.M. Siraz, M.J. Dewan, S. Pervin, A.F.M.M. Rahman, M.U. Khandaker, S. Yeasmin, Assessment of terrestrial radionuclides in the sandy soil from Guliakhali beach area of Chattogram, Bangladesh, J. Radioanal. Nucl. Chem. 331 (2022) 1299-1307, https://doi.org/10.1007/s10967-022-08196-2.
  58. J.A. dos Santos Junior, R. dos Santos Amaral, J.M. do Nascimento Santos, A.N.C. da Silva, L.A.V. Rojas, M.O. Milan, J. de Almeida Maciel Neto, J.D. Bezerra, E.E.N. De Araujo, Radioactive disequilibrium and dynamic of natural radionuclides in soils in the state of pernambuco-Brazil, Radiat. Protect. Dosim. 182 (2018) 448-458, https://doi.org/10.1093/rpd/ncy101.
  59. J. Al Mahmud, M.M.M. Siraz, M.S. Alam, S.C. Das, D.A. Bradley, M.U. Khandaker, S. Tokonami, A. Shelley, S. Yeasmin, A study into the long-overlooked carcinogenic radon in bottled water and deep well water in Dhaka, Bangladesh, Int. J. Environ. Anal. Chem. (2023) 1-13, https://doi.org/10.1080/03067319.2022.2163895.
  60. M.M.M. Siraz, D. Roy, M.J. Dewan, M.S. Alam, J. A M, M.B. Rashid, M.U. Khandaker, D.A. Bradley, S. Yeasmin, Vertical distributions of radionuclides along the tourist-attractive marayon tong hill in the bandarban district of Bangladesh, Environ. Monit. Assess. 195 (2023) 382, https://doi.org/10.1007/s10661-023-10921-7.
  61. C.M. Alonso-Hernandez, A.L. Toledo-Sibello, A. Guillen-Arruebarrena, R. Sibello-Hernandez, Y. Morera-Gomez, H.A. Cartas-Aguila, Natural radioactivity and evaluation of radiation hazards in soils from granitoide-granite geological formation in Cuba, Radiat. Protect. Dosim. 184 (2019) 5-11, https://doi.org/10.1093/rpd/ncy178.
  62. E. Kapdan, N. Altinsoy, G. Karahan, A. Yuksel, Outdoor radioactivity and health risk assessment for capital city Ankara, Turkey, J. Radioanal. Nucl. Chem. 318 (2018) 1033-1042, https://doi.org/10.1007/s10967-018-6060-5.
  63. K. Manisa, M. Erdogan, A. Usluer, H. Cetinkaya, U. Isik, L. Sahin, V. Zedef, Assessment of natural radioactivity level of soil and water in the region of Corlu (Turkey), J. Radioanal. Nucl. Chem. 329 (2021) 1213-1221, https://doi.org/10.1007/s10967-021-07906-6.
  64. K.U. Reddy, C. Ningappa, J. Sannappa, Natural radioactivity level in soils around Kolar Gold Fields, Kolar district, Karnataka, India, J. Radioanal. Nucl. Chem. 314 (2017) 2037-2045, https://doi.org/10.1007/s10967-017-5545-y.
  65. G. Sankaran Pillai, P. Shahul Hameed, S.M. Mazhar Nazeeb Khan, Natural radioactivity levels in the soils and human risk assessment in Tiruchirappalli district (Tamil Nadu, India), J. Radioanal. Nucl. Chem. 307 (2016) 1265-1277, https://doi.org/10.1007/s10967-015-4367-z.
  66. B. Jananee, A. Rajalakshmi, V. Thangam, K.M. Bharath, V. Sathish, Natural radioactivity in soils of Elephant hills, Tamilnadu, India, J. Radioanal. Nucl. Chem. 329 (2021) 1261-1268, https://doi.org/10.1007/s10967-021-07886-7.
  67. M.A.M. Uosif, Z.A. Alrowaili, R. Elsaman, A.M.A. Mostafa, Soil-soybean transfer factor of natural radionuclides in different soil textures and the assessment of committed effective dose, Radiat. Protect. Dosim. 188 (2020) 529-535, https://doi.org/10.1093/rpd/ncaa005.
  68. M.A. Haydar, M.M. Hasan, I. Jahan, K. Fatema, M.I. Ali, D. Paul, M.U. Khandaker, The status of NORMs in natural environment adjacent to the Rooppur nuclear power plant of Bangladesh, Nucl. Eng. Technol. 53 (2021) 4114-4121, https://doi.org/10.1016/j.net.2021.06.025.
  69. M.J. Abedin, M.R. Karim, M.U. Khandaker, M. Kamal, S. Hossain, M.H.A. Miah, D.A. Bradley, M.R.I. Faruque, M.I. Sayyed, Dispersion of radionuclides from coal-fired brick kilns and concomitant impact on human health and the environment, Radiat. Phys. Chem. 177 (2020), 109165, https://doi.org/10.1016/j.radphyschem.2020.109165.
  70. N. Absar, J. Abedin, M.M. Rahman, M.H. Miah, N. Siddique, M. Kamal, M.I. Chowdhury, A.A.M. Sulieman, M.R.I. Faruque, M.U. Khandaker, D.A. Bradley, A. Alsubaie, Radionuclides transfer from soil to tea leaves and estimation of committed effective dose to the Bangladesh populace, Life 11 (2021) 1-15, https://doi.org/10.3390/life11040282.
  71. M. Dhingra, M. Kumar, R. Mehra, N. Sharma, Assessment of primordial radionuclide contents in soil samples and of impact of coal-based thermal power plant: a study in Tarn Taran district in Punjab, India, Radiat. Protect. Environ. 43 (2020) 49, https://doi.org/10.4103/rpe.rpe_11_20.
  72. G. Liu, Q. Luo, M. Ding, J. Feng, Natural radionuclides in soil near a coal-fired power plant in the high background radiation area, South China, Environ. Monit. Assess. 187 (2015), https://doi.org/10.1007/s10661-015-4501-y.
  73. Z. Papp, Z. Dezso, S. Daroczy, Signi ficant radioactive contamination of soil around a coal-fired thermal power plant, J. Environ. Radioact. 59 (2002) 191-205, https://doi.org/10.1016/S0265-931X(01)00071-6.
  74. F. Gur, G. Yaprak, Natural radionuclide emission from coal-fired power plants in the southwestern of Turkey and the population exposure to external radiation in their vicinity, J. Environ. Sci. Heal. - Part A Toxic/Hazardous Subst. Environ. Eng. 45 (2010) 1900-1908, https://doi.org/10.1080/10934529.2010.520608.
  75. H. Aytekin, R. Baldik, On the radiological character of a coal-fired power plant at the town of Catalagzi, Turkey, Turkish, J. Eng. Environ. Sci. 32 (2008) 101-105.
  76. A.K. Mahur, M. Gupta, R. Varshney, R.G. Sonkawade, K.D. Verma, R. Prasad, Radon exhalation and gamma radioactivity levels in soil and radiation hazard assessment in the surrounding area of National Thermal Power Corporation, Dadri (U.P.), India, Radiat. Meas. 50 (2013) 130-135, https://doi.org/10.1016/j.radmeas.2012.09.008.
  77. E. Charro, R. Pardo, V. Pena, Statistical analysis of the spatial distribution of radionuclides in soils around a coal-fired power plant in Spain, J. Environ. Radioact. 124 (2013) 84-92, https://doi.org/10.1016/j.jenvrad.2013.04.011.
  78. H. Bem, P. Wieczorkowski, M. Budzanowski, Evaluation of technologically enhanced natural radiation near the coal-fired power plants in the Lodz region of Poland, J. Environ. Radioact. 61 (2002) 191-201, https://doi.org/10.1016/S0265-931X(01)00126-6.
  79. L. Wang, X. Lu, Natural radionuclide concentrations in soils around Baoji coal-fired power plant, China, Radiat. Eff. Defect Solid 162 (2007) 677-683, https://doi.org/10.1080/10420150601143153.
  80. X. Lu, C. Zhao, C. Chen, W. Liu, Radioactivity level of soil around Baqiao coal-fired power plant in China, Radiat. Phys. Chem. 81 (2012) 1827-1832, https://doi.org/10.1016/j.radphyschem.2012.07.013.
  81. NEA-OECD, Exposure to Radiation from Natural Radioactivity in Building Materials, Report by NEA group of Experts, OECD, Paris, France, 1979.