Browse > Article
http://dx.doi.org/10.1016/j.net.2021.05.032

Serial line multiplexing method based on bipolar pulse for PET  

Kim, Yeonkyeong (Molecular Imaging Research & Education (MiRe) Laboratory, Department of Electronic Engineering, Sogang University)
Choi, Yong (Molecular Imaging Research & Education (MiRe) Laboratory, Department of Electronic Engineering, Sogang University)
Kim, Kyu Bom (Department of Integrative Medicine, Major in Digital Healthcare, Yonsei University)
Leem, Hyuntae (Molecular Imaging Research & Education (MiRe) Laboratory, Department of Electronic Engineering, Sogang University)
Jung, Jin Ho (Molecular Imaging Research & Education (MiRe) Laboratory, Department of Electronic Engineering, Sogang University)
Publication Information
Nuclear Engineering and Technology / v.53, no.11, 2021 , pp. 3790-3797 More about this Journal
Abstract
Although the individual channel readout method can improve the performance of PET detectors with pixelated photo-sensors, such as silicon photomultiplier (SiPM), this method leads to a significant increase in the number of readout channels. In this study, we proposed a novel multiplexing method that could effectively reduce the number of readout channels to reduce system complexity and development cost. The proposed multiplexing circuit was designed to generate bipolar pulses with different zero-crossing points by adjusting the time constant of the high-pass filter connected to each channel of a pixelated photo-sensor. The channel position of the detected gamma-ray was identified by estimating the width between the rising edge and the zero-crossing point of the bipolar pulse. In order to evaluate the performance of the proposed multiplexing circuit, four detector blocks, each consisting of a 4 × 4 array of 3 mm × 3 mm × 20 mm LYSO and a 4 × 4 SiPM array, were constructed. The average energy resolution was 13.2 ± 1.1% for all 64 crystal pixels and each pixel position was accurately identified. A coincidence timing resolution was 580 ± 12 ps. The experimental results indicated that the novel multiplexing method proposed in this study is able to effectively reduce the number of readout channels while maintaining accurate position identification with good energy and timing performance. In addition, it could be useful for the development of PET systems consisting of a large number of pixelated detectors.
Keywords
Multiplexing method; Serial line multiplexing; SiPM; PET;
Citations & Related Records
연도 인용수 순위
  • Reference
1 M.F. Bieniosek, J.W. Cates, A.M. Grant, C.S. Levin, Analog filtering methods improve leading edge timing performance of multiplexed SiPMs, Phys. Med. Biol. 61 (2016), https://doi.org/10.1088/0031-9155/61/16/N427.   DOI
2 P. Avella, A. De Santo, A. Lohstroh, M.T. Sajjad, P.J. Sellin, A study of timing properties of silicon photomultipliers, Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 695 (2012) 257-260, https://doi.org/10.1016/j.nima.2011.11.049.   DOI
3 K.B. Kim, Y. Choi, J. Jung, S. Lee, H. jun Choe, H.T. Leem, Analog and digital signal processing method using multi-time-over-threshold and FPGA for PET, Med. Phys. 45 (2018) 4104-4111, https://doi.org/10.1002/mp.13101.   DOI
4 J.Y. Yeom, R. Vinke, C.S. Levin, Optimizing timing performance of silicon photomultiplier based scintillation detectors, IEEE Nucl. Sci. Symp. Conf. Rec. 58 (2012) 3119-3121, https://doi.org/10.1109/NSSMIC.2012.6551711.   DOI
5 H. Choe, Y. Choi, D.J. Kwak, J. Lee, Prototype time-of-flight PET utilizing capacitive multiplexing readout method, Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 921 (2019) 43-49, https://doi.org/10.1016/j.nima.2018.12.030.   DOI
6 S. Lee, Y. Choi, J. Kang, J.H. Jung, Development of a multiplexed readout with high position resolution for positron emission tomography, Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 850 (2017) 42-47, https://doi.org/10.1016/j.nima.2017.01.026.   DOI
7 M.F. Bieniosek, J.W. Cates, C.S. Levin, Achieving fast timing performance with multiplexed SiPMs, Phys. Med. Biol. 61 (2016) 2879-2892, https://doi.org/10.1088/0031-9155/61/7/2879.   DOI
8 I. Kwon, T. Kang, M.D. Hammig, Experimental validation of charge-sensitive amplifier configuration that compensates for detector capacitance, IEEE Trans. Nucl. Sci. 63 (2016) 1202-1208, https://doi.org/10.1109/TNS.2016.2530065.   DOI
9 S. Siegel, R.W. Silverman, S.R. Cherry, E. Shao, Simple charge division readouts for imaging scintillator arrays using a multi-channel, 1995, IEEE Nucl. Sci. Symp. Med. Imaging Conf. Rec. 1 (1995) 13-17, https://doi.org/10.1109/NSSMIC.1995.504167.   DOI
10 P.D. Olcott, J.A. Talcott, C.S. Levin, F. Habte, A.M.K. Foudray, Compact readout electronics for position sensitive photomultiplier tubes, IEEE Trans. Nucl. Sci. 52 (2005) 21-27, https://doi.org/10.1109/TNS.2004.843134.   DOI
11 D. Stratos, G. Maria, F. Eleftherios, L. George, Comparison of three resistor network division circuits for the readout of 4 x 4 pixel SiPM arrays, Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 702 (2013) 121-125, https://doi.org/10.1016/j.nima.2012.08.006.   DOI
12 X. Sun, K. Lou, Y. Shao, Capacitor based multiplexing circuit for silicon photomultiplier array readout. IEEE Nucl. Sci. Symp. Med. Imaging Conf., IEEE, 2014, pp. 1-5.
13 J. Du, J.P. Schmall, Y. Yang, K. Di, P.A. Dokhale, K.S. Shah, S.R. Cherry, A simple capacitive charge-division readout for position-sensitive solid-state photomultiplier arrays, IEEE Trans. Nucl. Sci. 60 (2013) 3188-3197, https://doi.org/10.1109/TNS.2013.2275012.   DOI
14 H. Choe, Y. Choi, W. Hu, J. Yan, J.H. Jung, Development of capacitive multiplexing circuit for SiPM-based time-of-flight (TOF) PET detector, Phys. Med. Biol. 62 (2017) N120-N133, https://doi.org/10.1088/1361-6560/aa5f9b.   DOI
15 I. Kwon, T. Kang, B.T. Wells, L.J. D'Aries, M.D. Hammig, Compensation of the detector capacitance presented to charge-sensitive preamplifiers using the Miller effect, Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 784 (2015) 220-225, https://doi.org/10.1016/j.nima.2014.12.049.   DOI
16 Z. Wang, X. Sun, K. Lou, J. Meier, R. Zhou, C. Yang, X. Zhu, Y. Shao, Design, development and evaluation of a resistor-based multiplexing circuit for a 20×20 SiPM array, Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 816 (2016) 40-46, https://doi.org/10.1016/j.nima.2016.01.081.   DOI
17 R. Vinke, J.Y. Yeom, C.S. Levin, Electrical delay line multiplexing for pulsed mode radiation detectors, Phys. Med. Biol. 60 (2015) 2785-2802, https://doi.org/10.1088/0031-9155/60/7/2785.   DOI
18 K.B. Kim, H.T. Leem, Y.H. Chung, H.-B. Shin, Feasibility study of multiplexing method using digital signal encoding technique, J Nucl Eng Technol 52 (2020) 2339-2345, https://doi.org/10.1016/j.net.2020.03.027.   DOI
19 E. Downie, X. Yang, H. Peng, Investigation of analog charge multiplexing schemes for SiPM based PET block detectors, Phys. Med. Biol. 58 (2013) 3943-3964, https://doi.org/10.1088/0031-9155/58/11/3943.   DOI
20 H. Kim, C.-T. Chen, N. Eclov, A. Ronzhin, P. Murat, E. Ramberg, S. Los, C.-M. Kao, A silicon photo-multiplier signal readout using strip-line and waveform sampling for Positron Emission Tomography, Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 830 (2016) 119-129, https://doi.org/10.1016/j.nima.2016.05.085.   DOI
21 J.Y. Won, G.B. Ko, J.S. Lee, Delay grid multiplexing: simple time-based multiplexing and readout method for silicon photomultipliers, Phys. Med. Biol. 61 (2016) 7113-7135, https://doi.org/10.1088/0031-9155/61/19/7113.   DOI
22 F. Villa, Y. Zou, A. Dalla Mora, A. Tosi, F. Zappa, SPICE electrical models and simulations of silicon photomultipliers, IEEE Trans. Nucl. Sci. 62 (2015) 1950-1960, https://doi.org/10.1109/TNS.2015.2477716.   DOI
23 K.B. Kim, Y. Choi, J. Kang, J.H. Jung, W. Hu, Signal transmission with long cable for design of PET detector for hybrid PET-MRI, IEEE Trans. Nucl. Sci. 62 (2015) 2010-2016, https://doi.org/10.1109/TNS.2015.2462730.   DOI
24 SensL, Readout Methods for Arrays of SiPM, 2014, pp. 1-15. SensL.
25 F. Corsi, C. Marzocca, A. Perrotta, A. Dragone, M. Foresta, A. Del Guerra, S. Marcatili, G. Llosa, G. Collazzuol, G.F. Dalla Betta, N. Dinu, C. Piemonte, G.U. Pignatel, G. Levi, Electrical characterization of silicon photo-multiplier detectors for optimal front-end design, IEEE Nucl. Sci. Symp. Conf. Rec. 2 (2007) 1276-1280, https://doi.org/10.1109/NSSMIC.2006.356076.   DOI
26 A.L. Goertzen, X. Zhang, M.M. McClarty, E.J. Berg, C.Y. Liu, P. Kozlowski, F. Retiere, L. Ryner, V. Sossi, G. Stortz, C.J. Thompson, Design and performance of a resistor multiplexing readout circuit for a SiPM detector, IEEE Trans. Nucl. Sci. 60 (2013) 1541-1549, https://doi.org/10.1109/TNS.2013.2251661.   DOI
27 J.H. Jung, Y. Choi, K.J. Hong, W. Hu, J. Kang, B.J. Min, S.H. Shin, H.K. Lim, Y. Huh, E.-J. Kim, Development of a position decoder circuit for PET consisting of GAPD arrays, Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 621 (2010) 310-315, https://doi.org/10.1016/j.nima.2010.04.028.   DOI
28 D. Kim, C.-H. Kim, I. Kwon, Experimental results on a detector capacitance compensation technique for multiplexing SiPM channels, Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 954 (2020) 161527, https://doi.org/10.1016/j.nima.2018.10.205.   DOI
29 K.J. Hong, Y. Choi, J.H. Jung, J. Kang, W. Hu, H.K. Lim, Y. Huh, S. Kim, J.W. Jung, K.B. Kim, M.S. Song, H.-W. Park, A prototype MR insertable brain PET using tileable GAPD arrays, Med. Phys. 40 (2013), 042503, https://doi.org/10.1118/1.4793754.   DOI
30 H. Park, G.B. Ko, J.S. Lee, Hybrid charge division multiplexing method for silicon photomultiplier based PET detectors, Phys. Med. Biol. 62 (2017) 4390-4405, https://doi.org/10.1088/1361-6560/aa6aea.   DOI