• Title/Summary/Keyword: ${\eta}-Ricci$ solitons

Search Result 22, Processing Time 0.02 seconds

𝜂-RICCI SOLITONS ON PARA-KENMOTSU MANIFOLDS WITH SOME CURVATURE CONDITIONS

  • Mondal, Ashis
    • Korean Journal of Mathematics
    • /
    • v.29 no.4
    • /
    • pp.705-714
    • /
    • 2021
  • In the present paper, we study 𝜂-Ricci solitons on para-Kenmotsu manifolds with Codazzi type of the Ricci tensor. We study 𝜂-Ricci solitons on para-Kenmotsu manifolds with cyclic parallel Ricci tensor. We also study 𝜂-Ricci solitons on 𝜑-conformally semi-symmetric, 𝜑-Ricci symmetric and conformally Ricci semi-symmetric para-Kenmotsu manifolds. Finally, we construct an example of a three-dimensional para-Kenmotsu manifold which admits 𝜂-Ricci solitons.

Some Geometric Properties of η-Ricci Solitons on α-Lorentzian Sasakian Manifolds

  • Shashikant, Pandey;Abhishek, Singh;Rajendra, Prasad
    • Kyungpook Mathematical Journal
    • /
    • v.62 no.4
    • /
    • pp.737-749
    • /
    • 2022
  • We investigate the geometric properties of 𝜂*-Ricci solitons on α-Lorentzian Sasakian (α-LS) manifolds, and show that a Ricci semisymmetric 𝜂*-Ricci soliton on an α-LS manifold is an 𝜂*-Einstein manifold. Further, we study 𝜑*-symmetric 𝜂*-Ricci solitons on such manifolds. We prove that 𝜑*-Ricci symmetric 𝜂*-Ricci solitons on an α-LS manifold are also 𝜂*-Einstein manifolds and provide an example of a 3-dimensional α-LS manifold for the existence of such solitons.

RICCI SOLITONS AND RICCI ALMOST SOLITONS ON PARA-KENMOTSU MANIFOLD

  • Patra, Dhriti Sundar
    • Bulletin of the Korean Mathematical Society
    • /
    • v.56 no.5
    • /
    • pp.1315-1325
    • /
    • 2019
  • The purpose of this article is to study the Ricci solitons and Ricci almost solitons on para-Kenmotsu manifold. First, we prove that if a para-Kenmotsu metric represents a Ricci soliton with the soliton vector field V is contact, then it is Einstein and the soliton is shrinking. Next, we prove that if a ${\eta}$-Einstein para-Kenmotsu metric represents a Ricci soliton, then it is Einstein with constant scalar curvature and the soliton is shrinking. Further, we prove that if a para-Kenmotsu metric represents a gradient Ricci almost soliton, then it is ${\eta}$-Einstein. This result is also hold for Ricci almost soliton if the potential vector field V is pointwise collinear with the Reeb vector field ${\xi}$.

η-Ricci Solitons in δ-Lorentzian Trans Sasakian Manifolds with a Semi-symmetric Metric Connection

  • Siddiqi, Mohd Danish
    • Kyungpook Mathematical Journal
    • /
    • v.59 no.3
    • /
    • pp.537-562
    • /
    • 2019
  • The aim of the present paper is to study the ${\delta}$-Lorentzian trans-Sasakian manifold endowed with semi-symmetric metric connections admitting ${\eta}$-Ricci Solitons and Ricci Solitons. We find expressions for the curvature tensor, the Ricci curvature tensor and the scalar curvature tensor of ${\delta}$-Lorentzian trans-Sasakian manifolds with a semisymmetric-metric connection. Also, we discuses some results on quasi-projectively flat and ${\phi}$-projectively flat manifolds endowed with a semi-symmetric-metric connection. It is shown that the manifold satisfying ${\bar{R}}.{\bar{S}}=0$, ${\bar{P}}.{\bar{S}}=0$ is an ${\eta}$-Einstein manifold. Moreover, we obtain the conditions for the ${\delta}$-Lorentzian trans-Sasakian manifolds with a semisymmetric-metric connection to be conformally flat and ${\xi}$-conformally flat.

Curvature Properties of 𝜂-Ricci Solitons on Para-Kenmotsu Manifolds

  • Singh, Abhishek;Kishor, Shyam
    • Kyungpook Mathematical Journal
    • /
    • v.59 no.1
    • /
    • pp.149-161
    • /
    • 2019
  • In the present paper, we study curvature properties of ${\eta}$-Ricci solitons on para-Kenmotsu manifolds. We obtain some results of ${\eta}$-Ricci solitons on para-Kenmotsu manifolds satisfying $R({\xi},X).C=0$, $R({\xi},X).{\tilde{M}}=0$, $R({\xi},X).P=0$, $R({\xi},X).{\tilde{C}}=0$ and $R({\xi},X).H=0$, where $C,\;{\tilde{M}},\;P,\;{\tilde{C}}$ and H are a quasi-conformal curvature tensor, a M-projective curvature tensor, a pseudo-projective curvature tensor, and a concircular curvature tensor and conharmonic curvature tensor, respectively.

ON 3-DIMENSIONAL LORENTZIAN CONCIRCULAR STRUCTURE MANIFOLDS

  • Chaubey, Sudhakar Kumar;Shaikh, Absos Ali
    • Communications of the Korean Mathematical Society
    • /
    • v.34 no.1
    • /
    • pp.303-319
    • /
    • 2019
  • The aim of the present paper is to study the Eisenhart problems of finding the properties of second order parallel tensors (symmetric and skew-symmetric) on a 3-dimensional LCS-manifold. We also investigate the properties of Ricci solitons, Ricci semisymmetric, locally ${\phi}$-symmetric, ${\eta}$-parallel Ricci tensor and a non-null concircular vector field on $(LCS)_3$-manifolds.