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SOME RESULTS ON η-RICCI SOLITONS IN

QUASI-SASAKIAN 3-MANIFOLDS

Abdul Haseeb, Shashikant Pandey, and Rajendra Prasad

Abstract. In the present paper, we characterize quasi-Sasakian 3-mani-

folds admitting η-Ricci solitons. Finally, the existence of η-Ricci soliton
in a quasi-Sasakian 3-manifold has been proved by a concrete example.

1. Introduction

Quasi-Sasakian manifold is a natural generalization of Sasakian manifold
whose notion was introduced by Blair [2] to unify Sasakian and cosympletic
structures. The properties of quasi-Sasakian manifolds have been studied by
various authors such as Gonzalez and Chinea [13], Kanemaki ([16,17]), De and
Sarkar [9], De et al. [10], Turan et al. [22] and many others. On a 3-dimensional
quasi-Sasakian manifold, the structure function β was defined by Olszak [19]
and with the help of this function he has obtained necessary and sufficient
conditions for the manifold to be conformally flat [20].

A Ricci soliton (g, V, λ) on a Riemannian manifold (M, g) is a generalization
of an Einstein metric such that

£V g + 2S + 2λg = 0,(1)

where S is the Ricci tensor, £V is the Lie derivative operator along the vec-
tor field V on M and λ is a real number. The Ricci soliton is said to be
shrinking, steady or expanding according to λ being negative, zero or positive,
respectively.

As a generalization of Ricci soliton, the notion of η-Ricci soliton was intro-
duced by Cho and Kimura [6]. This notion has also been studied for Hopf
hypersurfaces in complex space forms by Calin and Crasmareanu [5]. An η-
Ricci soliton is a quadruple (g, V, λ, µ), where V is a vector field on M , λ and µ
are constants and g is a Riemannian (or pseudo-Riemannian) metric satisfying
the equation

(2) £V g + 2S + 2λg + 2µη ⊗ η = 0,
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where S is the Ricci tensor associated to g and η is a 1-form. Recently, an η-
Ricci soliton has been studied by various authors in several ways to a different
extent such as Blaga [1], De and Mondal [8], Ghosh [12], Haseeb and Prasad
([14, 15]), Majhi et al. [18], Prakasha and Hadimani [21] and many others. In
particular, if µ = 0, then the notion of η-Ricci soliton (g, V, λ, µ) reduces to the
notion of Ricci soliton (g, V, λ).

Let M be a (2n + 1)-dimensional Riemannain manifold. If there exists a
one to one correspondence between each coordinate neighbourhood of M and a
domain in Euclidean space such that any geodesic of the Riemannian manifold
corresponds to a straight line in the Euclidean space, then M is said to be
locally projectively flat. For n ≥ 1, M is locally projectively flat if and only if
the projective curvature tensor vanishes. Here the projective curvature tensor
P with respect to the Levi-Civita connection ∇ is defined by ([11,24])

(3) P (X,Y )Z = R(X,Y )Z − 1

2n
[S(Y,Z)X − S(X,Z)Y ]

for all X,Y, Z ∈ χ(M), where R is the Riemannian curvature tensor and S is
the Ricci tensor with respect to the Levi-Civita connection.

The paper is organized as follows: In Section 2, we give a brief introduction
of quasi-Sasakian manifolds. In Section 3, we study projectively flat quasi-
Sasakian 3-manifolds admitting η-Ricci solitons. Section 4 deals with the
study φ-projectively semisymmetric quasi-Sasakian 3-manifolds admitting η-
Ricci solitons. Sections 5, 6 and 7 are devoted to study η-Ricci solitons in
quasi-Sasakian 3-manifolds satisfying the curvature conditions P (ξ,X) ·S = 0,
Q · P = 0 and Q · R = 0, respectively. In Section 8, we study η-Ricci solitons
in recurrent quasi-Sasakian 3-manifolds. Finally, we construct an example of
quasi-Sasakian 3-manifolds which admits an η-Ricci soliton.

2. Preliminaries

Let M be an almost contact metric manifold of dimension (2n + 1) with
an almost contact metric structure (φ, ξ, η, g), where φ, ξ, η are tensor fields of
type (1, 1), (1, 0), (0, 1) respectively and g is a Riemannian metric on M such
that ([3, 4])

φ2X = −X + η(X)ξ, η(ξ) = 1, φξ = 0, η(φX) = 0,(4)

g(φX, φY ) = g(X,Y )− η(X)η(Y ),(5)

g(X,φY ) = −g(φX, Y ), g(X, ξ) = η(X)(6)

for all X,Y ∈ χ(M), where χ(M) denotes the collection of all smooth vector
fields of M . M is said to be quasi-Sasakian if the almost contact structure
(φ, ξ, η) is normal and the fundamental 2-form Φ is closed (dΦ = 0). A three
dimensional almost contact metric manifold M is quasi-Sasakian if and only if
[19]

(7) ∇Xξ = −βφX
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for a certain function β on M , such that ξβ = 0, where ∇ is the Levi-Civita
connection of M . Clearly, a quasi-Sasakian 3-manifold is cosymplectic if and
only if β = 0. If β = constant, then the manifold reduces to a β-Sasakian
manifold and β = 1 gives the Sasakian structure. Throughout in the paper, we
are using the fact that β = constant.

In a quasi-Sasakian 3-manifold, we have [19]

(∇Xφ)Y = β(g(X,Y )ξ − η(Y )X),(8)

(∇Xη)Y = − βg(φX, Y ),(9)

R(X,Y )Z = (
r

2
− 2β2)(g(Y,Z)X − g(X,Z)Y )(10)

+ (3β2 − r

2
)(g(Y,Z)η(X)ξ − g(X,Z)η(Y )ξ

+ η(Y )η(Z)X − η(X)η(Z)Y ),

S(X,Y ) = (
r

2
− β2)g(X,Y ) + (3β2 − r

2
)η(X)η(Y )(11)

for all X,Y, Z ∈ χ(M).

Definition. A quasi-Sasakian manifold is said to be an η-Einstein manifold if
its non-vanishing Ricci tensor S is of the form

(12) S(X,Y )Y = ag(X,Y ) + bη(X)η(Y ),

where a and b are smooth functions on the manifold. If b = 0, then the manifold
is said to be an Einstein manifold.

Proposition 2.1 ([12]). A 3-dimensional non-cosymplectic quasi-Sasakian
manifold admitting an η-Ricci soliton is an η-Einstein manifold given by

(13) S(X,Y ) = −λg(X,Y )− µη(X)η(Y )

for any X,Y ∈ χ(M).

Proposition 2.2 ([12]). If a 3-dimensional non-cosymplectic quasi-Sasakian
manifold admits an η-Ricci soliton, then we have

(14) λ+ µ = −2β2,

where λ and µ are constants.

3. Projectively flat quasi-Sasakian 3-manifolds admitting η-Ricci
solitions

Let M be a projectively flat quasi-Sasakian 3-manifold admitting an η-Ricci
soliton. Therefore, P (X,Y )Z = 0 and thus from (3) it follows that

(15) R(X,Y )Z =
1

2
[S(Y, Z)X − S(X,Z)Y ].

Taking the inner product of (15) with ξ and using (6), we have

g(R(X,Y )Z, ξ) =
1

2
[S(Y,Z)η(X)− S(X,Z)η(Y )]
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which by virtue of (10) takes the form

4β2(g(Y,Z)η(X)− g(X,Z)η(Y )) = S(Y,Z)η(X)− S(X,Z)η(Y ).

Putting X = ξ in the last equation, then using (4), (6) and (13), we find

(16) S(Y,Z) = 4β2g(Y, Z)− (4β2 + λ+ µ)η(Y )η(Z).

By using (14) in (16), we get

(17) S(Y,Z) = 4β2g(Y, Z)− 2β2η(Y )η(Z).

Now from (13) and (17) it follows that λ = −4β2 < 0 and µ = 2β2. Thus we
can state the following:

Theorem 3.1. A projectively flat quasi-Sasakian 3-manifold admitting an η-
Ricci soliton is an η-Einstein manifold of the form (17) and the Ricci soliton
is always shrinking.

4. φ-projectively semisymmetric quasi-Sasakian 3-manifolds
admitting η-Ricci solitions

Definition. A quasi-Sasakian manifold is said to be φ-projectively semisym-
metric if [7]

P (X,Y ) · φ = 0

for all X,Y on M .

Let M be a φ-projectively semisymmetric quasi-Sasakian 3-manifold admit-
ting an η-Ricci soliton. Therefore P (X,Y ) · φ = 0 turns into

(18) (P (X,Y ) · φ)Z = P (X,Y )φZ − φP (X,Y )Z = 0

for any vector fields X,Y, Z ∈ χ(M). From (3), we find

(19) P (X,Y )φZ = R(X,Y )φZ − 1

2
[S(Y, φZ)X − S(X,φZ)Y ],

and

(20) φP (X,Y )Z = φR(X,Y )Z − 1

2
[S(Y, Z)φX − S(X,Z)φY ].

Combining the equations (18), (19) and (20), we have

R(X,Y )φZ − φR(X,Y )Z − 1

2
[S(Y, φZ)X − S(X,φZ)Y

− S(Y, Z)φX + S(X,Z)φY ] = 0

which by taking Y = ξ and using (6), (10), (13) and (14) reduces to

(21) S(X,φZ)ξ − 4β2g(X,φZ)ξ − 2β2η(Z)φX = 0.

Taking the inner product of (21) with ξ and using (4), we find

(22) S(X,φZ) = 4β2g(X,φZ).

By replacing Z by φZ in (22) and making use of (4), we have

S(X,Z)− η(Z)S(X, ξ)− 4β2g(X,Z) + 4β2η(X)η(Z) = 0



SOME RESULTS ON η-RICCI SOLITONS IN QUASI-SASAKIAN 3-MANIFOLDS 381

which by using (13) and (14) gives

(23) S(X,Z) = 4β2g(X,Z)− 2β2η(X)η(Z).

Now from (13) and (23) it follows that λ = −4β2 < 0 and µ = 2β2. Thus we
can state the following:

Theorem 4.1. A φ-projectively semisymmetric quasi-Sasakian 3-manifold ad-
mitting an η-Ricci soliton is an η-Einstein manifold of the form (23) and the
Ricci soliton is always shrinking.

5. η-Ricci solitons in quasi-Sasakian 3-manifolds satisfying
P (ξ,X) · S = 0

Let M be a quasi-Sasakian 3-manifold admitting an η-Ricci soliton satisfying
P (ξ,X) · S = 0. Then we have

(24) S(P (ξ,X)Y, Z) + S(Y, P (ξ,X)Z) = 0.

From (3), we find

(25) P (ξ,X)Y = 2β2(g(X,Y )ξ − η(Y )X)− 1

2
(S(X,Y )ξ + (λ+ µ)η(Y )X).

By virtue of (25), (24) takes the form

2β2[g(X,Y )S(ξ, Z)+g(X,Z)S(ξ, Y )−η(Y )S(X,Z)−η(Z)S(X,Y )]

−1

2
[S(X,Y )S(ξ, Z)+S(X,Z)S(ξ, Y )+(λ+µ)(S(X,Y )η(Z)+S(X,Z)η(Y ))]=0,

which by virtue of (13) reduces to

(26)
2β2[S(X,Z)η(Y ) + S(X,Y )η(Z)

+ (λ+ µ)(g(X,Y )η(Z) + g(X,Z)η(Y ))] = 0.

Taking Z = ξ in (26) then using (6) and (13), we find

(27) S(X,Y ) = −(λ+ µ)g(X,Y ).

Now by using (14) in (27), we get

(28) S(X,Y ) = 2β2g(X,Y ).

From the equations (13) and (28) it follows that λ = −2β2 < 0 and µ = 0.
Thus we can state the following:

Theorem 5.1. If a quasi-Sasakian 3-manifold admitting an η-Ricci soliton
(g, ξ, λ, η) satisfies P (ξ,X) · S = 0, then the manifold is an Einstein manifold
of the form (28), and the η-Ricci soliton becomes Ricci soliton (g, ξ, λ) which
is always shrinking.

Again it is known that a 3-dimensional Einstein manifold is a manifold of
constant curvature [24]. Thus we have:

Corollary 5.2. A quasi-Sasakian 3-manifold admitting an η-Ricci soliton sat-
isfying P (ξ,X) · S = 0 is a manifold of constant curvature.
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6. η-Ricci solitons in quasi-Sasakian 3-manifolds satisfying Q ·P = 0

Let M be a quasi-Sasakian 3-manifold admitting an η-Ricci soliton satisfying
Q · P = 0. Then we have

(29) Q(P (X,Y )Z)− P (QX,Y )Z − P (X,QY )Z − P (X,Y )QZ = 0

for all X,Y, Z ∈ χ(M). In view of (3), (29) becomes

Q(R(X,Y )Z)−R(QX,Y )Z −R(X,QY )Z

−R(X,Y )QZ + S(Y,QZ)X − S(X,QZ)Y = 0

which by taking the inner product with ξ takes the form

(30)
η(Q(R(X,Y )Z))− η(R(QX,Y )Z)− η(R(X,QY )Z)

− η(R(X,Y )QZ) + S(Y,QZ)η(X)− S(X,QZ)η(Y ) = 0.

Putting Y = ξ in (30), we have

(31)
η(Q(R(X, ξ)Z))− η(R(QX, ξ)Z)− η(R(X,Qξ)Z)

− η(R(X, ξ)QZ) + S(ξ,QZ)η(X)− S(X,QZ)η(ξ) = 0.

From (10), we find

(32)


η(Q(R(X, ξ)Z)) = η(R(X,Qξ)Z) = 4β4(η(X)η(Z)− g(X,Z)),

η(R(QX, ξ)Z) = η(R(X, ξ)QZ) = 2β2(2β2η(X)η(Z)− S(X,Z)),

S(ξ,QZ) = 4β4η(Z).

By the use of (6) and (32), (31) takes the form

(33) S(X,QZ) = 4β2S(X,Z)− 4β4η(X)η(Z).

In view of (13), (33) turns to

(34) (λ+ 4β2)S(X,Z) + 2β2(µ− 2β2)η(X)η(Z) = 0

which in view of (14) reduces to

(35) S(X,Z) = 2β2η(X)η(Z),

where µ 6= 2β2. Therefore, from (13) and (35), we get µ = −2β2 and hence
λ = 0. Thus we can state the following theorem:

Theorem 6.1. If a quasi-Sasakian 3-manifold admitting an η-Ricci soliton
(g, ξ, λ, η) satisfies Q · P = 0, then the manifold is a special type of η-Einstein
manifold of the form (35), and the Ricci solitons is always steady.
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7. η-Ricci solitons in quasi-Sasakian 3-manifolds satisfying Q ·R = 0

Let M be a quasi-Sasakian 3-manifold admitting an η-Ricci soliton satisfying
Q ·R = 0. Then we have

(36) Q(R(X,Y )Z)−R(QX,Y )Z −R(X,QY )Z −R(X,Y )QZ = 0

for all X,Y, Z ∈ χ(M). By virtue of (10), (36) takes the form

(37)

(r − 2β2)(S(X,Z)Y − S(Y,Z)X) + (3β2 − r

2
)(g(Y, Z)η(X)Qξ

− g(Y,Z)η(QX)ξ − g(X,Z)η(Y )Qξ + g(X,Z)η(QY )ξ

+ 2S(X,Z)η(Y )ξ − 2S(Y, Z)η(X)ξ + η(QX)η(Z)Y

− η(QY )η(Z)X + η(X)η(QZ)Y − η(Y )η(QZ)X) = 0.

From (13), it follows that

(38)

{
QX = −λX − µη(X)ξ =⇒ η(QX) = −(λ+ µ)η(X),

Qξ = −(λ+ µ)ξ.

By using (38), (37) reduces to

(39)

(r − 2β2)(S(X,Z)Y − S(Y,Z)X)

+ (6β2 − r)(S(X,Z)η(Y )ξ − S(Y, Z)η(X)ξ)

− (λ+ µ)(η(X)Y − η(Y )X)η(Z) = 0.

Taking the inner product of (39) with ξ, we have

(r − 2β2)(S(X,Z)η(Y )− S(Y,Z)η(X))

+ (6β2 − r)(S(X,Z)η(Y )− S(Y,Z)η(X)) = 0

which by putting Y = ξ and using (13) gives

(40) 4β2(S(X,Z) + (λ+ µ)η(X)η(Z)) = 0.

Thus we have

(41) S(X,Z) = −(λ+ µ)η(X)η(Z).

From (13) and (41), it follows that λ = 0 and hence from (14), we get µ = −2β2.
Therefore, (41) turns to

(42) S(X,Z) = 2β2η(X)η(Z).

Thus we can state the following:

Theorem 7.1. If a quasi-Sasakian 3-manifold admitting an η-Ricci soliton
(g, ξ, λ, η) satisfies Q ·R = 0, then the manifold is a special type of η-Einstein
manifold of the form (42), and the Ricci solitons is always steady.
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8. Recurrent quasi-Sasakian 3-manifolds admitting η-Ricci solitons

Definition. A quasi-Sasakian 3-manifold is said to be recurrent if there exists
a non-zero 1-form A such that [23]

(43) (∇XR)(Y, Z)W = A(X)R(Y,Z)W

for all vector fields X,Y, Z and W on M . If the 1-form A vanishes, then the
manifold reduces to a symmetric manifold.

Assume that M is a recurrent quasi-Sasakian manifold. Therefore, the cur-
vature tensor of the manifold satisfies (43). By a suitable contraction of (43),
we get

(44) (∇XS)(Z,W ) = A(X)S(Z,W ).

This implies that

(45) ∇XS(Z,W )− S(∇XZ,W )− S(Z,∇XW ) = A(X)S(Z,W )

which by taking W = ξ and then using (7), (9) and (13) yields

(46) βS(Z, φX)− β(λ+ µ)g(X,φZ) = −A(X)(λ+ µ)η(Z).

Suppose the associated 1-form A is equal to the associated 1-form η, then from
(46), we have

(47) βS(Z, φX)− β(λ+ µ)g(X,φZ) = −(λ+ µ)η(X)η(Z).

By replacing Z by φZ in (47), then using (4) and (6), we get

(48) βS(φZ, φX) + β(λ+ µ)(g(X,Z)− η(X)η(Z)) = 0.

In view of (5) and (13), it follows from (48) that

(49) βµ(g(X,Z)− η(X)η(Z)) = 0.

This implies that µ = 0 and hence from (14), we get λ = −2β2. Thus we can
state the following:

Theorem 8.1. In a recurrent quasi-Sasakian 3-manifold an η-Ricci soliton
becomes a Ricci soliton which is always shrinking.

Example. We consider the 3-dimensional manifold M =
{

(x, y, z) ∈ R3
}

,

where (x, y, z) are the standard coordinates in R3. Let e1, e2 and e3 be the
vector fields on M given by

e1 =
∂

∂x
, e2 =

∂

∂y
+ 2x

∂

∂z
, e3 =

∂

∂z
= ξ,

which are linearly independent at each point of M . Let g be the Riemannian
metric defined by

g(e1, e1) = g(e2, e2) = g(e3, e3) = 1, g(e1, e2) = g(e1, e3) = g(e2, e3) = 0.
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Let η be the 1-form on M defined by η(X) = g(X, e3) = g(X, ξ) for all X ∈
χ(M). Let φ be the (1, 1) tensor field on M defined by

φe1 = −e2, φe2 = e1, φe3 = 0.

The linearity property of φ and g yields

η(ξ) = g(ξ, ξ) = 1, φ2X = −X + η(X)ξ, η(φX) = 0,

g(X, ξ) = η(X), g(φX, φY ) = g(X,Y )− η(X)η(Y )

for all X,Y ∈ χ(M).
Now, by direct computations we obtain

[e1, e2] = 2e3, [e1, e3] = 0, [e2, e3] = 0.

The Riemannian connection ∇ of the metric tensor g is given by

2g(∇XY, Z) = Xg(Y, Z) + Y g(Z,X)− Zg(X,Y )

− g(X, [Y,Z]) + g(Y, [Z,X]) + g(Z, [X,Y ]),

which is known as Koszul’s formula. Using Koszul’s formula, we can easily
calculate

∇e1e1 = 0, ∇e2e1 = −e3, ∇e3e1 = −e2, ∇e1e2 = e3, ∇e2e2 = 0,

∇e3e2 = e1, ∇e1e3 = −e2, ∇e2e3 = e1, ∇e3e3 = 0.

Also, one can easily verify that

∇Xξ = −βφX and (∇Xφ)Y = β(g(X,Y )ξ − η(Y )X), where β = −1.

Thus the manifold M is a quasi-Sasakian manifold. It is known that

R(X,Y )Z = ∇X∇Y Z −∇Y∇XZ −∇[X,Y ]Z.

By using the above results, one can easily obtain the components of the curva-
ture tensors as follows:

R(e1, e2)e1 = 3e2, R(e1, e2)e2 = −3e1, R(e1, e2)e3 = 0,

R(e2, e3)e1 = 0, R(e2, e3)e2 = −e3, R(e2, e3)e3 = e2,

R(e1, e3)e1 = −e3, R(e1, e3)e2 = 0, R(e1, e3)e3 = e1.

From these curvature tensors, we calculate the components of Ricci tensor as
follows:

(50) S(e1, e1) = S(e2, e2) = −2, S(e3, e3) = 2.

Therefore, r =
∑3
i=1 S(ei, ei) = −2. From the equations (13) and (50), we

obtain λ = 2 and µ = −4. Thus the data (g, ξ, λ, µ) for λ = 2 and µ = −4
defines an η-Ricci solitons on (M,φ, ξ, η, g).
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