• 제목/요약/키워드: ${\beta}1^{\prime}$ phase

검색결과 17건 처리시간 0.024초

상 안정화제가 $Na^+$-Beta-Alumina 고체 전해질의 상 형성 및 소결밀도에 미치는 영향 (Effect of Phase Stabilizers on the Phase Formation and Sintering Density of $Na^+$-Beta-Alumina Solid Electrolyte)

  • 이기문;이성태;이대한;이상민;임성기
    • 공업화학
    • /
    • 제23권6호
    • /
    • pp.534-538
    • /
    • 2012
  • $ Na^+$-beta-alumina 고체전해질을 고상반응법을 통해 합성하였으며, 두 종류의 안정화제 $Li_2O$와 MgO가 상 형성 및 소결밀도에 미치는 영향을 비교 분석하였다. 합성온도에 따른 ${\beta}/{\beta}^{{\prime}{\prime}}$-alumina 상 분율 분석을 위해, [$Na_2O$] : [$Al_2O_3$] = 1 : 5의 고정된 몰 비에서 하소온도를 $1200{\sim}1500^{\circ}C$로 변화하여, 각각 2 h동안 하소하였다. $Li_2O$를 안정화제로 사용한 경우에는 $1500^{\circ}C$에서 2차 상 전이가 발생해 ${\beta}^{{\prime}{\prime}}$-alumina 상 분율의 증가가 나타났지만, MgO를 첨가했을 때는 하소온도에 관계없이 상 분율이 유지되었다. 또한 disc 형태의 $Na^+$-beta-alumina 샘플을 $1550{\sim}1650^{\circ}C$의 온도에서 각각 30 min 소결한 후 상대 소결밀도, 상 변화 및 미세구조를 분석하였다. $Li_2O$를 안정화제로 사용하였을 때, 소결온도 $1600^{\circ}C$에서 ${\beta}^{{\prime}{\prime}}$-상 분율과 상대밀도가 각각 94.7%와 98%로 가장 높은 값을 나타냈으며, MgO를 안정화제로 사용하였을 경우, 소결온도의 증가에 따라 상대밀도가 크게 증가하는 결과를 보였다.

액상반응에 의한 K+-β"-Al2O3 합성시 분산첨가제 에탄올과 pH가 입도 및 상형성에 미치는 영향 (Effect of Ethanol as a Dispersant and pH on the Particle Size and Phase Formation in the Synthesis of K+-β"-Al2O3 by Solution State Reaction)

  • 조도형;김우성;신재호;임성기
    • 공업화학
    • /
    • 제16권1호
    • /
    • pp.45-51
    • /
    • 2005
  • Aluminum nitrate 수용액을 원료로 사용하여 $K_2O-Li_2O-Al_2O_3$ 3성분계로부터 $K^+-{\beta}^{{\prime}{\prime}}-Al_2O_3$를 합성하였다. 순수한 $K^+-{\beta}^{{\prime}{\prime}}-Al_2O_3$의 합성을 위하여 원료물질은 $0.84K_2O{\cdot}0.082Li_2O{\cdot}5.2Al_2O_3$의 조성으로 액상상태에서 혼합되었다. 입자크기를 최소화하고 순수한 $K^+-{\beta}^{{\prime}{\prime}}-Al_2O_3$를 합성하는데 있어서 분산첨가제와 용액의 pH의 영향을 조사하였다. 분산첨가제로써 에탄올을 0.0~4.0 M 첨가하였고 용액의 pH는 $NH_4OH$ 수용액과 $HNO_3$를 이용하여 조절하였다. 시료는 pH 1.0에서 7.5까지 0.5 간격으로 수집하였다. 각 시료들은 $1200^{\circ}C$에서 2 h 동안 하소한 후 XRD와 PSA 분석을 하였다. 용액의 pH는 입자크기와 상형성에 모두 중요한 영향을 미친 반면, 에탄올의 첨가는 입자크기에만 영향을 주었다. pH 조절에 $HNO_3$를 사용하였을 경우, $HNO_3$를 사용하지 않았을 때 보다 순수한 $K^+-{\beta}^{{\prime}{\prime}}-Al_2O_3$ 상을 합성하는데 유리함을 알 수 있었다.

열처리 온도 및 냉각방법이 Cu-22Sn합금의 미세조직 및 경도변화에 미치는 영향 (Effects of Heat Treatment Temperature and Cooling Method on Microstructure and Hardness of Cu-22Sn alloy)

  • 정무섭;신아리;한준현
    • 열처리공학회지
    • /
    • 제31권3호
    • /
    • pp.104-110
    • /
    • 2018
  • The effects of heat treatment time and cooling method on microstructure and mechanical property of Cu-22wt%Sn alloy were discussed. ${\alpha}+{\delta}$ mixed phase structure was obtained in air-cooled specimens after heat treatment at 775, 750, and $700^{\circ}C$ for 1 hour. On the other hand, in water-cooled specimens, ${\alpha}+{\beta}^{\prime}$ martensite mixed phase was obtained. In the case of water-cooled specimens, the hardness value decreased with decreasing heat treatment temperature because the volume fraction of ${\alpha}$ phase with low hardness value increased as the heat treatment temperature decreased. In water-cooled specimen after heat treatment at $600^{\circ}C$, ${\gamma}^{\prime}$ martensite was formed instead of ${\beta}^{\prime}$ martensite. The hardness value of ${\gamma}^{\prime}$ martensite was lower than those of ${\beta}^{\prime}$ and ${\delta}$ phases.

일방향 응고된 Cu-Al-Ni 합금의 변태특성에 미치는 열처리 영향 (Influence of Heat Treatment on Transformation Characteristics in an Unidirectionally Solidified Cu-Al-Ni Alloy)

  • 박윤규;장우양
    • 열처리공학회지
    • /
    • 제16권2호
    • /
    • pp.90-96
    • /
    • 2003
  • The effect of betatizing temperature on microstructure and transformation characteristics in a Cu-AI-Ni based pseudoelastic alloy fabricated by heated mold continuous casting by using metallography, XRD and calorimetry. The microstructure of cast rod betatized at $600^{\circ}C$ revealed a ${\beta}_1$ parent phase and a ${\gamma}_2$ phase precipitated along the casting direction. When the cast rod was betatized at the elevated temperature above $600^{\circ}C$, the ${\gamma}_2$ phase is completely dissolved into the matrix so that the volume fraction of the ${\gamma}_2$ phase was decreased. The parent phase was stabilized by betatizing at $600^{\circ}C$. However, the ${\beta}_1$ parent phase was transformed to both ${{\beta}_1}^{\prime}$ and ${{\gamma}_1}^{\prime}$ martensites with increasing betatizing temperatures above $600^{\circ}C$, while $M_s$ and $A_s$ temperatures were decreased. The stress-strain curves for compression test were not same with betatizing temperature; the stress-strain curves of the specimen betatized at $600^{\circ}C$ and $700^{\circ}C$ were linear but those of the specimen betatized at $800^{\circ}C$ and $900^{\circ}C$ were not linear.

Nanotubular Structure Formation on Ti-6Al-4V and Ti-Ta Alloy Surfaces by Electrochemical Methods

  • Lee, Kang;Choe, Han-Cheol;Ko, Yeong-Mu;Brantley, W.A.
    • 대한금속재료학회지
    • /
    • 제50권2호
    • /
    • pp.164-170
    • /
    • 2012
  • Nanotubular structure formation on the Ti-6Al-4V and Ti-Ta alloy surfaces by electrochemical methods has been studied using the anodizing method. A nanotube layer was formed on Ti alloys in 1.0 M $H_3PO_4$ electrolyte with small additions of $F^-$ ions. The nanotube nucleation and growth of the ${\alpha}$-phase and ${\beta}$-phase appeared differently, and showed different morphology for Cp-Ti, Ti-6Al-4V and Ti-Ta alloys. In the ${\alpha}$-phase of Cp-Ti and martensite ${\alpha}^{\prime}$ and in the ${\alpha}^{{\prime}{\prime}}$ and ${\beta}$-phase of the Ti-Ta alloy, the nanotube showed a clearly highly ordered $TiO_2$ layer. In the case of the Ti-Ta alloy, the pore size of the nanotube was smaller than that of the Cp-Ti due to the ${\beta}$-stabilizing Ta element. In the case of the Ti-6Al-4V alloy, the ${\alpha}$-phase showed a stable porous structure; the ${\beta}$-phase was dissolved entirely. The nanotube with two-size scale and high order showed itself on Ti-Ta alloys with increasing Ta content.

The Effect of Lithia Addition on the Sodium Ion Conductivity of Vapor Phase Converted Na-β"-alumina/YSZ Solid Electrolytes

  • Sasidharanpillai, Arun;Kim, Hearan;Cho, Yebin;Kim, Dongyoung;Lee, Seungmi;Jung, Keeyoung;Lee, Younki
    • 전기화학회지
    • /
    • 제25권4호
    • /
    • pp.191-200
    • /
    • 2022
  • Na-β"-Al2O3 has been widely employed as a solid electrolyte for high-temperature sodium (Na) beta-alumina batteries (NBBs) thanks to its superb thermal stability and high ionic conductivity. Recently, a vapor phase conversion (VPC) method has been newly introduced to fabricate thin Na-β"-Al2O3 electrolytes by converting α-Al2O3 into β"-Al2O3 in α-Al2O3/yttria-stabilized zirconia (YSZ) composites under Na+ and O2- dual percolation environments. One of the main challenges that need to be figured out is lowered conductivity due to the large volume fraction of the non-Na+-conducting YSZ. In this study, the effect of lithia addition in the β"-Al2O3 phase on the grain size and ionic conductivity of Na-β"-Al2O3/YSZ solid electrolytes have been investigated in order to enhance the conductivity of the electrolyte. The amount of pre-added lithia (Li2O) precursor as a phase stabilizer was varied at 0, 1, 2, 3, and 4 mol% against that of Al2O3. It turns out that ionic conductivity increases even with 1 mol% lithia addition and reaches 67 mS cm-1 at 350 ℃ of its maximum with 3 mol%, which is two times higher than that of the undoped composite.

Effect of Solution Treatment and Short Time Aging on Mechanical Properties of Cast Ti-6Al-4V Alloy

  • Oh, Seong-Tak;Woo, Kee-Do;Kwak, Seung-Mi;Kim, Jae-Hwang
    • 한국재료학회지
    • /
    • 제26권5호
    • /
    • pp.287-291
    • /
    • 2016
  • The effect of heat treatment on the microstructure and mechanical properties of cast Ti-6%Al-4%V alloy was investigated. Heat treatment of cast Ti-6Al-4V alloy was conducted by solution treatment at $950^{\circ}C$ for 30 min; this was followed by water quenching and then aging at $550^{\circ}C$ for 1 to 1440 min. The highest hardness of the heat-treated specimens was obtained by solution treatment and subsequent aging for 5 min due to precipitates of fine ${\alpha}$ that formed from retained ${\beta}$ phase. The tensile strength of this alloy increased without dramatic decrease of the ductility due to microstructural refinement resulting from the decomposition of ${\alpha}^{\prime}$ martensite into fine ${\alpha}$ and ${\beta}$ phases, and also due to the fine ${\alpha}$ phase formed from the retained ${\beta}$ phase by aging treatment for 5 min. In addition, this strengthening might be caused by the transformation induced plasticity (TRIP) effect, which is a strain-induced martensite transformation from the retained ${\beta}$ phase during deformation, and which occurs even after aging treatment at $550^{\circ}C$ for 5 min.

고압용기로 사용되는 후방압출된 알루미늄 6061합금의 기계적 특성에 미치는 용체화처리 및 시효처리의 영향 (The Effect of Solution Heat Treatment and Aging Treatment on the Mechanical Properties of Backward Extruded A6061 Alloy for Pressure Vessels)

  • 권의표;우기도;문민석;강덕수;남궁천;유계형
    • 대한금속재료학회지
    • /
    • 제47권3호
    • /
    • pp.175-181
    • /
    • 2009
  • Mechanical properties and precipitation behavior of backward extruded 6061 Al alloy for pressure vessel were investigated using tensile test, transmission electron microscopy (TEM) and differential scanning calorimeter (DSC). In this study, solution heat treatment (SHT) was performed at $535^{\circ}C$ for 30~90 min and aging treatment was conducted at 177 and $190^{\circ}C$ for 1~7 h. Maximum tensile strength of $36.6kgf/mm^2$ and yield strength of $33.29kgf/mm^2$ were achieved at the aging time of 5 h at $190^{\circ}C$. TEM observation showed that fine needle-like ${\beta}^{{\prime}{\prime}}$ phase which has 35~45 nm of length was uniformly distributed in the aged 6061 Al alloy specimen. From tensile test, TEM and DSC analysis, it is expected that aging time of 2~5 h at $190^{\circ}C$ is suitable for the extruded A6061 used as pressure vessels.

Cu-Al-Ni계 단결정 합금의 마르텐사이트 변태특성에 미치는 열처리의 영향 (The Effect of Heat Treatment on the Martensitic Transformation in an Cu-Al-Ni Single Crystal)

  • 김영삼;장우양
    • 열처리공학회지
    • /
    • 제13권3호
    • /
    • pp.177-182
    • /
    • 2000
  • The effects of betatizing and aging temperatures on the martensitic transformation characteristics in an Cu-13.4wt%Al-4.2wt%Ni single crystal have been studied. Microstructures show that the specimen betatized above $800^{\circ}C$ has only ${{\beta}_1}^{\prime}$ martensite while the specimen betatized of below $700^{\circ}C$ has two phases i.e., ${{\beta}_1}^{\prime}+{\gamma}_2$ When betatizing temperature increase from $600^{\circ}C$ upto $900^{\circ}C$, Ms and As temperatures decrease due to the dissolution of which ${\gamma}_2$ phase depletes Al content in the matrix thereafter makes the both Ms and As temperatures significantly increased. Ms and As temperatures of the specimen aged at $200^{\circ}C$ are relatively stable but those of the specimen aged at $300^{\circ}C$ are shifted rapidly with aging time, especially within the first 30min.

  • PDF

Ti-3Al-2.5V 합금의 고온피로에 미치는 온도 및 미세조직의 영향 (The Effect of Temperature and Microstructure on High Temperature Fatigue Crack Propagation Property in Ti-3Al-2.5V Alloy)

  • 김현철;임병수
    • 한국자동차공학회논문집
    • /
    • 제6권3호
    • /
    • pp.198-207
    • /
    • 1998
  • To determine the effect of temperature and microstructure on the fatigue crack propagation behavior in Ti-3Al-2.5V alloy, experimental investigations have been carried out with the specimens of different temperatures and different volume fractions of prime $\alpha$-phase. The temperatures employed were room temperature, 20$0^{\circ}C$, 30$0^{\circ}C$ and 40$0^{\circ}C$ under the same frequency of 20Hz. To obtain the different volume fractions of the primary $\alpha$-phase, specimens were solution-treated at $\alpha$+$\beta$ and above the $\beta$ region. From the experimental results, following conclusions were obtained. (1) ΔKth was observed to increase with the less volume fraction of the primary $\alpha$-phase. (2) As the temperature increased. (3) Microstructures having more primary $\alpha$-phase showed higher strength at the high temperatures.

  • PDF