• 제목/요약/키워드: ${\beta}-SiC$ 분말

검색결과 64건 처리시간 0.028초

The Investigation of Reaction Parameters on the Reactivity in the Preparation of SiC by SHS (자전연소합성법에 의한 SiC 분말 제조시 반응변수의 영향)

  • Shin, Chang-Yun;Won, Hyung-Il;Nersisyan, Hayk;Won, Chang-Whan
    • Journal of the Korean Ceramic Society
    • /
    • 제43권7호
    • /
    • pp.427-432
    • /
    • 2006
  • The preparation of SiC powder by SHS in the system of $SiO_2-Mg-C$ was investigated in this study. The effects of various processing parameters such as the initial pressure of inert gas in reactor, the content of Mg and C in mixture and the size of $SiO_2$ particles on the synthesis of SiC by SHS methode were investigated. The minimum initial pressure of inert gas in reactor for SHS reaction in this system was 5 atm, and as the pressure increased, and the concentration of unreacted Mg decreased. At 50 atm of the initial inert gas pressure in reactor, the optimum composition for the preparation of pure SiC was $SiO_2+2.5Mg+1.2C$. SiC powder synthesized in this condition had a mixture of ${\alpha}-SiC\;and\;{\beta}-SiC$ with an irregular shape and the particle size of $0.5{\sim}0.8{\mu}m$.

Fabrication of Molybdenum Silicide-based Composites with Uniformly Dispersed Silicon Carbide (탄화 규소가 균일 분산된 규화 몰리브데넘계 복합재의 제조)

  • Choi, Won June;Park, Chun Woong;Kim, Young Do;Byun, Jong Min
    • Journal of Powder Materials
    • /
    • 제25권5호
    • /
    • pp.402-407
    • /
    • 2018
  • Molybdenum silicide has gained interest for high temperature structural applications. However, poor fracture toughness at room temperatures and low creep resistance at elevated temperatures have hindered its practical applications. This study uses a novel powder metallurgical approach applied to uniformly mixed molybdenum silicide-based composites with silicon carbide. The degree of powder mixing with different ball milling time is also demonstrated by Voronoi diagrams. Core-shell composite powder with Mo nanoparticles as the shell and ${\beta}-SiC$ as the core is prepared via chemical vapor transport. Using this prepared core-shell composite powder, the molybdenum silicide-based composites with uniformly dispersed ${\beta}-SiC$ are fabricated using pressureless sintering. The relative density of the specimens sintered at $1500^{\circ}C$ for 10 h is 97.1%, which is similar to pressure sintering owing to improved sinterability using Mo nanoparticles.

Microstructure and mechanical properties in hot-forged liquid-phase-sintered silicon carbide (고온단조에 의한 액상소결 탄화규소의 미세구조 및 기계적 특성)

  • Roh, Myong-Hoon;Kim, Won-Joong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • 제11권6호
    • /
    • pp.1943-1948
    • /
    • 2010
  • Two kind of $\beta$-SiC powders of different particle sizes (${\sim}1.7\;{\mu}m$ and ${\sim}30\;nm$), containing 7 wt% $Y_2O_3$, 2 wt% $Al_2O_3$ and 1 wt% MgO as sintering additives, were prepared by hot pressing at $1800^{\circ}C$ for 1 h under applied pressures, and then were hot-forged at $1950^{\circ}C$ for 6 h under 40 MPa in argon. All the hot-pressed specimens consisted of equiaxed grains and were developed grain growth after hot-forging. The smaller starting powder was developed the finer microstructure. The microstructures on the surfaces parallel and perpendicular to the pressing direction of the hot-forged SiC were similar to each other, and no texture development was observed because of the lack of massive $\beta$ to $\sigma$ phase transformation of SiC. The fracture toughness (${\sim}3.9\;MPa{\cdot}m^{1/2}$), hardness (~ 25.2 GPa) and flexural strength (480 MPa) of hot-forged SiC using larger starting powder were higher than those of the other.

Characterization of SiC nanowire Synthesized by Thermal CVD (열 화학기상증착법을 이용한 탄화규소 나노선의 합성 및 특성연구)

  • Jung, M.W.;Kim, M.K.;Song, W.;Jung, D.S.;Choi, W.C.;Park, C.J.
    • Journal of the Korean Vacuum Society
    • /
    • 제19권4호
    • /
    • pp.307-313
    • /
    • 2010
  • One-dimensional cubic phase silicon carbide nanowires (${\beta}$-SiC NWs) were efficiently synthesized by thermal chemical vapor deposition (TCVD) with mixtures containing Si powders and nickel chloride hexahydrate $(NiCl_2{\cdot}6H_2O)$ in an alumina boat with a carbon source of methane $(CH_4)$ gas. SEM images are shown that the growth temperature (T) of $1,300^{\circ}C$ is not enough to synthesize the SiC NWs owing to insufficient thermal energy for melting down a Si powder and decomposing the methane gas. However, the SiC NWs could be synthesized at T>$1,300^{\circ}C$ and the most efficient temperature for growth of SiC NWs is T=$1,400^{\circ}C$. The synthesized SiC NWs have the diameter with an average range between 50~150 nm. Raman spectra clearly revealed that the synthesized SiC NWs are forming of a cubic phase (${\beta}$-SiC). Two distinct peaks at 795 and $970 cm^{-1}$ in Raman spectra of the synthesized SiC NWs at T=$1,400^{\circ}C$ represent the TO and LO mode of the bulk ${\beta}$-SiC, respectively. XRD spectra are also supported to the Raman spectra resulting in the strongest (111) peaks at $2{\Theta}=35.7^{\circ}$, which is the (111) plane peak position of 3C-SiC. Moreover, the gas flow rate of 300 sccm for methane is the optimal condition for synthesis of a large amount of ${\beta}$-SiC NW without producing the amorphous carbon structure shown at a high methane flow rate of 800 sccm. TEM images are shown two kinds of the synthesized ${\beta}$-SiC NWs structures. One is shown the defect-free ${\beta}$-SiC NWs with a (111) interplane distance of 0.25 nm, and the other is the stacking-faulted ${\beta}$-SiC NWs. Also, TEM images exhibited that two distinct SiC NWs are uniformly covered with $SiO_2$ layer with a thickness of less 2 nm.

Combustion Synthesis of Fibrous Silicon Carbide (고온연소합성을 이용한 섬유형 탄화규소의 합성)

  • Choi, Yong
    • Korean Journal of Materials Research
    • /
    • 제8권6호
    • /
    • pp.551-559
    • /
    • 1998
  • 장경비가 큰 탄화규소를 탄소와 규소간의 고온연소반응으로 제조하기 위하여 공정변수에 따른 연소거동과 미세조직의 변화를 조사하였다. 연소합성된 생성물은 주로 $\beta$-SiC이며 연소반응이 충분히 진행되지 못하였을 경우에는 미량의 잔류 반응물과 $\alpha$-SiC가 관찰되었다. 생성된 탄화규소의 평균입도는 약 5$\mu\textrm{m}$로 작았으며, $1300^{\circ}C$ 이상의 예열 조건에서 장경비가 30이상인 탄화규소를 합성할 수 있었다. 압분 강도가 69MPa인 분말의 성형체에서 평균 연소 온도와 평균 전파 속도는 각각 약 $1425^{\circ}C$와 2.1mm/sec 범위이며, 연소 온도는 흑연 분말을 사용하였을 경우가 탄소 섬유를 사용한 경우보다 약 $10^{\circ}C$ 높았다. 연소 반응을 임의로 중단시킨 시편의 계면을 EDX와 Auger 전자 현미경으로 분석한 결과 상호 확산층이 관찰되지 않았다. 이는 탄화규조의 연소합성이 용해-석출 모델에 의하여 진행됨을 시사한다. 예열 온도에 따른 연소 반응 중의 온도 분포를 유한 요소법으로 해석함으로써 $2500^{\circ}C$의 초기 연소 개시 온도에 대하여 예열 온도 $300^{\circ}C$에서는 연소파가 거의 전파할 수 없으며 예열 온도가 $1300^{\circ}C$에서는 시료 내부에 자체 전파가 가능한 $2000^{\circ}C$이상의 온도 구역이 존재함을 알았다.

  • PDF

The Study on Fabrication of LAS System Ceramics for Thermal Shock Resistance from Silicate Minerals: (II) Preparation of Spodumene Powders with Sillimanite, Kaolin and Pyrophyllite Group Minerals (실리케이트 광물을 이용한 내열충격성 LAS계 세라믹스의 제조에 관한 연구: (II) Sillimanite, Kaolin 및 Pyrophyllite족 광물을 이용한 Spodumene 분말합성)

  • 박한수;조경식;문종수
    • Journal of the Korean Ceramic Society
    • /
    • 제31권7호
    • /
    • pp.784-794
    • /
    • 1994
  • Though spodumene have a law theraml expension and good thermal shock resistance, its sintering temperature is too close to its melting point in the application for industral purpose. Solving the problems, impurities within the silicate minerals act as a frit during firing, so its densification is expected through enlargement of sintering temperature range. By the heat treatment of starting materials, mixtures of silicate mineral, lithium carbonate, if necessary SiO2 or Al2O3 were added for stoichiometric correction, in the range of 1000~125$0^{\circ}C$ for 10 hrs, $\beta$-spodumene single phase was synthesized. Mixtures with sillimanite group minerals, $\beta$-spodumene was formed at 120$0^{\circ}C$ or 125$0^{\circ}C$ via intermediate phases of petalite, Li2SiO3 and LiAlO2. For the case of kaolin group minerals, synthesis were completed at 110$0^{\circ}C$ for Hadon pink kaolin, 120$0^{\circ}C$ for New Zealand white kaolin, When pyrophyllite group minerals were used, those were at the range of 1000~125$0^{\circ}C$. Spodumene was completed at lowest temperature, 100$0^{\circ}C$ from the mixture of Wando pyrophyllite among them. Microstructure of synthesized powders showed the inrregular lump shape such as densed crystallines.

  • PDF

A preparation of hexacelsian powder by solution-polymerization route and its phase transformation behavior (Solution- polymerization 방법에 의한 hexacelsian 분말의 합성 및 상전이 공정에 의한 celsian 소결체의 제조)

  • Sang-Jin Lee;Young-Soo Yoon
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • 제7권3호
    • /
    • pp.428-436
    • /
    • 1997
  • Hexacelsian ($BaO{\cdot}Al_2O_3{\cdot}2SiO_2$) powder was prepared by a solution-polymerization route employing PVA solution as a polymeric carrier. A fine amorphous-type hexacelsian powder with an average particle size of 0.8 $\mu \textrm{m}$ and a BET specific surface area of $63 \textrm{m}^2$/g was made by a ball-milling the powder precursor for 12 h after calcination at $800^{\circ}C$ for :1 h. A densified hexacelsian was obtained through sintering at $1550^{\circ}C$ for 2 h under an air atmosphere. The $\alpha\longleftrightarrow\beta$ and $\beta\longleftrightarrow\gamma$ displacive phase transformation in polycrystalline hexacelsia,n was examined by using dilatometry and differential scanning calorimtry. The reconstructive transformation between hexacelsian and celsian was obtained by annealing at $1600^{\circ}C$ for 72h. Volume contraction of 5.6% was accompanied by the reconstructive transformation.

  • PDF

Junction of Porous SiC Semiconductor and Ag Alloy (다공질 SiC 반도체와 Ag계 합금의 접합)

  • Pai, Chul-Hoon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • 제19권3호
    • /
    • pp.576-583
    • /
    • 2018
  • Silicon carbide is considered to be a potentially useful material for high-temperature electronic devices, as its band gap is larger than that of silicon and the p-type and/or n-type conduction can be controlled by impurity doping. Particularly, porous n-type SiC ceramics fabricated from ${\beta}-SiC$ powder have been found to show a high thermoelectric conversion efficiency in the temperature region of $800^{\circ}C$ to $1000^{\circ}C$. For the application of SiC thermoelectric semiconductors, their figure of merit is an essential parameter, and high temperature (above $800^{\circ}C$) electrodes constitute an essential element. Generally, ceramics are not wetted by most conventional braze metals,. but alloying them with reactive additives can change their interfacial chemistries and promote both wetting and bonding. If a liquid is to wet a solid surface, the energy of the liquid-solid interface must be less than that of the solid, in which case there will be a driving force for the liquid to spread over the solid surface and to enter the capillary gaps. Consequently, using Ag with a relatively low melting point, the junction of the porous SiC semiconductor-Ag and/or its alloy-SiC and/or alumina substrate was studied. Ag-20Ti-20Cu filler metal showed promise as the high temperature electrode for SiC semiconductors.

The Study on Fabrication of LAS System Ceramics for Thermal Shock Resistance from Silicate Minerals: (I) Preparation of Eucryptite Powders with Sillimanite Group, Kaolin Group Minerals (실리케이트 광물을 이용한 내열충격성 LAS계 세라믹스의 제조에 관한 연구: (I) Sillimanite와 Kaolin족 광물을 이용한 Eucryptite 분말합성)

  • 박한수;조경식;문종수
    • Journal of the Korean Ceramic Society
    • /
    • 제31권5호
    • /
    • pp.572-580
    • /
    • 1994
  • With low thermal expansion coefficients, eucryptite (Li2O.Al2O3.2SiO2) and spodumene (Li2O.Al2O3.4SiO2) in LAS ceramic system show good thermal shock resistance. In this study, sillimanite or kaolin group silicate minerals and Li2CO3 were used as starting materials, and if necessary SiO2 or Al2O3 were added for making stoichiometrically formed specimens. By this process, eucryptite powders were synthesized and characterized. The powder mixtures of lithiumcabonate and silicate minerals calcined at 80$0^{\circ}C$ for 2 hrs were made into powder compacts. $\beta$-Eucryptite single phase was formed via intermediate phases of Li2SiO3 and LiAlO2 et al, by heating at 110$0^{\circ}C$ or 120$0^{\circ}C$ for 10 hrs from those powder compacts. When using the sillimanite group minerals, Virginia kyanite or andalusite was reacted to form eucryptite at 120$0^{\circ}C$and CMK International kyanite were completed at 110$0^{\circ}C$. When kaolin group minerals were used, it was found that the synthesizing temperature (100$0^{\circ}C$) of $\beta$-eucryptite from the mixture of New Zealand white kaolin was lower than that from Hadong pink kaolin (110$0^{\circ}C$). The Microstructure of systhesized powder showed the irregular lump shape such as densed crystallines.

  • PDF

Glass-Ceramics of $Li_2O-Al_2O_3-SiO_2$ System Produced by Sintering (소결법에 의한 $Li_2O-Al_2O_3-SiO_2$계 결정화 유리의 제조)

  • 연석주
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • 제3권2호
    • /
    • pp.176-184
    • /
    • 1993
  • The glasses, which the $\beta$-spodumene as the principal crystalline phase could be precipitated, were melted by adding >, $P_2O_5, TiO_2, ZrO_2 in the Li_2O-Al_2O_3-SiO_2$ system. In order to achieve the glass-ceramic body of near-theoritical density by sintering method, the optimum condition of heat treatment, the effect of glass powder size and the properties were investigated by DTA, XRD, bulk density, thermal expansion and SEM. Addition of $P_20_5$ imProved the tendency of sintering and the sample with 9wt% $P_20_5$ content was the most dense OOdy by sintering method. The optimum condition of heat treatmemt was sintered for densitification at $740^{\circ}C$ and crystallized at $950^{\circ}C$. In the optimum condition, the relative density was above 90% and the thermal expansion was negative about $-1{\times}10^{-7}/^{\circ}C$.

  • PDF