• Title/Summary/Keyword: ${\beta}-Glucanase$

Search Result 187, Processing Time 0.023 seconds

Antifungal activity of Streptomyces costaricanus HR391 against some plant-pathogenic fungi (여러 식물병원성 진균을 억제하는 Streptomyces costaricanus HR391의 항진균능)

  • Kim, Hae-Ryoung;Song, Hong-Gyu
    • Korean Journal of Microbiology
    • /
    • v.52 no.4
    • /
    • pp.437-443
    • /
    • 2016
  • In this study Streptomyces strains were isolated from soils and their antifungal activities and involved mechanisms were investigated. Among over 400 isolates of actinomycetes, Streptomyces costaricanus HR391 was selected as a potential antagonist to control several plant-pathogenic fungi. S. costaricanus HR391 inhibited mycelial growth of Fusarium oxysporum f. sp. raphani, F. oxysporum f. sp. niveum, F. oxysporum f. sp. lycopersici, and Rhizoctonia solani by 26.5, 26.2, 21.2, and 23.8%, respectively compared to those of uninoculated control after 7-day incubation on PDB medium. S. costaricanus HR391 produced $89{\mu}M$ of siderphore, and showed fungal cell wall-degrading activity including $0.46{\mu}mol/min/mg$ of chitinase and $0.83{\mu}mol/min/mg$ of ${\beta}$-1,3 glucanase. S. costaricanus HR391 secreted 87.49 mg/L of rhamnolipid, and produced 9.49 mg/L and 4.3 mM of lipopeptide, iturin A and surfactin, respectively, all they are membrane-disrupting biosurfactants. It also produced antimicrobial peptide and antibiotics phenazine. In addition to antifungal substances, S. costaricanus HR391 secreted plant growth-promoting phytohormones, zeatin, gibberellins and IAA. These results suggest that S. costaricanus HR391 may be utilized as an environment-friendly biocontrol agent against some important pathogenic fungi.

Effects of Supplementary Threonine, Canola Oil or Enzyme on Nutrient Digestibility, Performance and Carcass Traits of Growing-finishing Pigs Fed Diets Containing Wheat Distillers Grains with Solubles

  • Thacker, P.A.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.22 no.12
    • /
    • pp.1676-1685
    • /
    • 2009
  • This trial was conducted to determine the effects of various feed additives on nutrient digestibility, performance and carcass traits of growing-finishing pigs fed diets containing wheat distiller' grains with solubles (WDGS). Seventy-two, individually fed pigs (19.7${\pm}$2.6 kg), were assigned to one of six dietary treatments in a 6${\times}$2 (treatment${\times}$sex) factorial design (N = 12). The control diet was based on wheat and soybean meal while the five experimental diets contained 20% WDGS during the growing period and 12% WDGS during the finishing period. One 20% WDGS diet was unsupplemented while the remaining diets were supplemented with either 0.1% threonine, 5% canola oil, 0.2% enzyme (0.1% Endofeed W containing 1,250 units/g of xylanase and 385 units/g of $\beta$-glucanase and 0.1% Vegpro containing 7,700 HUT/g protease and 75 CMC/g cellulase), or a combination of the three additives at the same levels as those fed separately. The digestibility of dry matter, crude protein and energy were all significantly higher in the control diet than the unsupplemented diet containing 20% WDGS. None of the feed additives improved nutrient digestibility. In addition, none of the additives had any significant effect on gain or feed intake during the growing (19.7 to 43.6) or finishing (43.6 to 114.3 kg) periods or overall (19.7 to 114.3 kg). During the growing period, feed conversion was significantly improved for pigs fed the combination of additives compared with the unsupplemented WDGS diet. During the finishing period and overall, feed conversion was significantly improved for pigs fed 5% canola oil alone or in combination with the other additives. None of the supplements had any effect on carcass traits. These results indicate that WDGS can be successfully used as a partial replacement for soybean meal in diets fed to growingfinishing pigs. However, due to its low energy content, there may be some merit in including high energy ingredients such as canola oil when diets containing WDGS are fed.

Performance of Broiler Chicks Fed Normal and Low Viscosity Rye or Barley with or without Enzyme Supplementation

  • He, T.;Thacker, P.A.;McLeod, J.G.;Campbell, G.L.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.16 no.2
    • /
    • pp.234-238
    • /
    • 2003
  • This experiment was conducted to measure nutrient digestibility and performance in broiler chicks fed diets based on normal and low viscosity rye or barley fed with and without enzyme (pentosanase and $\beta$-glucanase) during a 17 day growth trial. A total of 150 one-day old, male broiler chicks (5 birds per pen and 5 pens per treatment) were randomly assigned to one of six dietary treatments in a $3{\times}3$ factorial design experiment (3 cereals${\times}$2 enzyme levels). Digestibility coefficients were determined using chromic oxide. Digestibility coefficients for dry matter and crude protein were significantly (p=0.0001) higher for the barley-based diets than for any of the rye-based diets. Digestibility coefficients for gross energy did not differ (p>0.05) due to cereal grain. There were no differences in the digestibility coefficients for dry matter and gross energy between chicks fed normal and low viscosity rye. However, the digestibility coefficient for crude protein was higher (p=0.01) for the low viscosity rye compared with the normal viscosity rye. Addition of enzyme to the diet significantly (p=0.0001) increased digestibility coefficients for dry matter, crude protein and energy. There were no significant differences in weight gain, feed intake or feed conversion between birds fed barley or rye or between birds fed normal or low viscosity rye. Enzyme supplementation significantly improved (p=0.0001) weight gain, intake and feed conversion. The overall results of this experiment indicate that unsupplemented barley and rye do not support adequate growth rates in poultry. Enzyme supplementation dramatically improved broiler performance. In addition, genetic selection to reduce the viscosity of rye had only a modest effect on the nutritive value of rye for broilers.

Screening Differential Expressions of Defense-related Responses in Cold-treated 'Kyoho' and 'Campbell Early' Grapevines

  • Ahn, Soon Young;Kim, Seon Ae;Han, Jae Hyun;Kim, Seung Heui;Yun, Hae Keun
    • Horticultural Science & Technology
    • /
    • v.31 no.3
    • /
    • pp.275-281
    • /
    • 2013
  • Low temperature is one of the major environmental factors that affect productivity including reduced growth and budding of vines, and changes of metabolic processes in grape (Vitis spp.). To screen the specific expression of abiotic stress-related genes against cold treatment in 'Kyoho' and 'Campbell Early' grapevines, expression of various defense-related genes was investigated by RT-PCR and real-time PCR. Among the 67 genes analyzed by RT-PCR and real-time PCR, 17 and 16 types of cDNA were up-regulated, while 5 and 6 types were down-regulated in cold-treated 'Kyoho' and 'Campbell Early' grapevines, respectively. Genes encoding carotene (Cart3564 and Cart4472), chalcone isomerase (CHI), cytochrome P450 (CYP), flavonol synthase (FLS), endo-${\beta}$-glucanase precursor (Glu), glutathione peroxidase (GPX), glutathione-S-transferase (GST), leucine-rich repeats (LRR), manganese superoxide dismutase (Mn-SOD), phenylalanine ammonia lyase (PAL), polygalacturonase-inhibiting protein (PGIP), proline rich protein 2 (PRP2), small heat shock protein (sHSP), temperature induced lipocalin (TIL), and thaumatin-like protein (TLP) were up-regulated, while those encoding CBF like transcription factor (CBF1), chitinase-like protein (CLP), cold induced protein (CIP), glycerol-3-phosphate acyltransferase (GPAT), and mitogen-activated protein kinase (MAPK) were down-regulated by low temperature treatment in both in 'Kyoho' and 'Campbell Early'.

Comparative Analysis of Defense Responses in Chocolate Spot-Resistant and -Susceptible Faba Bean (Vicia faba) Cultivars Following Infection by the Necrotrophic Fungus Botrytis fabae

  • El-Komy, Mahmoud H.
    • The Plant Pathology Journal
    • /
    • v.30 no.4
    • /
    • pp.355-366
    • /
    • 2014
  • In this study, resistance responses were investigated during the interaction of Botrytis fabae with two faba bean cultivars expressing different levels of resistance against this pathogen, Nubaria (resistant) and Giza 40 (susceptible). Disease severity was assessed on leaves using a rating scale from 1 to 9. Accumulation levels of reactive oxygen species (ROS), lipid peroxidation and antioxidant enzymes (superoxide dismutase, catalase and ascorbate peroxidase) were measured in leaf tissues at different times of infection. The expression profiles of two pathogenesis-related proteins (PRPs) encoded by the genes PR-1 and ${\beta}$-1,3-glucanase were also investigated using reverse transcription RT-PCR analysis. The accumulation of these defense responses was induced significantly in both cultivars upon infection with B. fabae compared with un-inoculated controls. The resistant cultivar showed weaker necrotic symptom expression, less ROS accumulation, a lower rate of lipid peroxidation and higher activity of the enzymatic ROS scavenging system compared with susceptible cultivar. Interestingly, ROS accumulated rapidly in the resistant leaf tissues and peaked during the early stages of infection, whereas accumulation was stronger and more intense in the susceptible tissues in later stages. Moreover, the response of the resistant cultivar to infection was earlier and stronger, exhibiting high transcript accumulation of the PR genes. These results indicated that the induction of oxidant/antioxidant responses and the accumulation of PRPs are part of the faba bean defense mechanism against the necrotrophic fungus B. fabae with a different intensity and timing of induction, depending on the resistance levels.

Quantitative Changes of Plant Defense Enzymes in Biocontrol of Pepper (Capsicium annuum L.) Late Blight by Antagonistic Bacillus subtilis HJ927

  • LEE HYUN-JIN;PARK KEUN-HYUNG;SHIM JAE-HAN;PARK RO-DONG;KIM YONG-WOONG;CHO JEUNG-YONG;HWANGBO HOON;KIM YOUNG-CHEOL;CHA GYU-SUK;KRISHNAN HARI B.;KIM KIL-YONG
    • Journal of Microbiology and Biotechnology
    • /
    • v.15 no.5
    • /
    • pp.1073-1079
    • /
    • 2005
  • To investigate plant protection, pathogenesis-related (PR) proteins and plant defense enzymes related to cell wall lignification were studied in pepper plants inoculated with antagonistic Bacillus subtilis HJ927 and pathogenic strain Phytophthora capsici. Phytophthora blight disease was reduced by $53\%$ in pepper roots when preinoculated with B. subtilis HJ927 against P. capsici. The activities of PR proteins (chitinase and ${\beta}$-1,3,-glucanase) and defense-related enzymes (peroxidase, polyphenoloxidase, and phenylalanine ammonia lyase) decreased in roots of B. subtilis+P capsid-treated plants, but increased in leaves with time. The decrease and increase were much greater in P. capsici-treated plants than in B. subtilis HJ927+P capsici-treated plants, although P. capsici-treated plants had more severe damage. Therefore, changes of enzyme activities do not seem to be directly related to plant protection. We suggest that the change of these enzymes in pathogen-treated plants may be related to plant response rather than to resistance against pathogen attacks.

Replacement of Yellow Maize with Pearl Millet (Pennisetum typhoides), Foxtail Millet (Setaria italica) or Finger Millet (Eleusine coracana) in Broiler Chicken Diets Containing Supplemental Enzymes

  • Rama Rao, S.V.;Raju, M.V.L.N.;Reddy, M.R.;Panda, A.K.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.17 no.6
    • /
    • pp.836-842
    • /
    • 2004
  • An experiment was conducted to study the performance of broilers chicks (2 to 42 d of age) fed diets containing pearl millet (PM, Pennisetum typhoides), foxtail millet (FOM, Setaria italica) or finger millet (FIM, Elusine coracana) totally replacing (w/w) yellow maize (YM) with and with out supplementing non-starch polysaccharide (NSP) hydrolysing enzymes at the rate of 0.5 g/kg diet. Enzyme preparation contained amylase 2,400 units, hemi-cellulase 5,400 units, cellulase 12,000 units, protease 2,400 units and beta-glucanase 106 units/g. Each diet was fed to eight replicates (five female Vencob broilers/replicate) housed in stainless steel battery brooders. The estimated metabolizable energy (ME) contents of YM, PM, FOM and FIM were FM (PM) were about 3,389, 2,736, 3,303 and 2,846 kcal/kg, respectively. Total replacement of YM with FOM did not influence the body weight gain, ready to cook yield, relative weights of giblet, liver, intestine, lymphoid organs (bursa and spleen) and length of intestine, antibody titers and livability at 42 d of age. But the food efficiency decreased significantly in FOM fed broilers compared those fed YM. Further, the fat content in thigh muscle reduced with FOM fed groups compared to those fed YM. The performance of broilers decreased significantly in PM and FIM fed broilers compared to those fed YM. The relative weights of giblet, gizzard and liver increased in FIM fed groups compared to those fed YM as the principal source of energy in broilers. Incorporation of NSP hydrolysing enzymes in commercial broiler diets improved the efficiency of feed utilization during starter phase but not at 42 d of age. The results thus indicate that yellow maize can be replaced in toto on weight basis in commercial broiler diets without affecting the performance. Supplementation of NSP hydrolysing enzymes was beneficial in enhancing feed utilization during the starter phase.

Effects of Processed Barley on Growth Performance and Ileal Digestibility of Growing Pigs

  • Chu, K.S.;Kim, J.H.;Chae, B.J.;Chung, Y.K.;Han, In K.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.11 no.3
    • /
    • pp.249-254
    • /
    • 1998
  • Two experiments were conducted to evaluate the effects of processing of barley on the growth performance and ileal and fecal digestibility of growing pigs. In Exp. 1, a total of 20 cannulated pigs (10.80 kg BW) were allotted to four treatments. Treatments were coarse ground barley as a control (CON), finely ground barley (FINE), extruded barley (EXT) and enzyme supplemented coarse ground barley (ENZ). In Exp. 2, a total of 100 growing pigs (36.50 kg BW) were allocated to the same treatments in completely randomized block design based on sex and body weight. In the first trial, pigs fed extruded barley showed significantly higher crude protein digestibility over pigs fed finely ground barley (p < 0.05). Pigs fed finely ground barley generally showed lower nutrients digestibility. Extrusion and ${\beta}$-glucanase supplementation showed a trend to improve nutrients digestibility. However, fine grinding rather reduced nutrients digestibility. The similar trend was found in the digestibility of essential amino acids. Fine grinding of barley significantly reduced amino acids digestibility. Extrusion and enzyme supplementation were found to improve amino acids digestibility of barley in growing pigs. In the growth trial, pigs fed extruded barley grew significantly faster than any other processed barley fed pigs. And extrusion of barley significantly improved feed/gain of pigs (p < 0.05). Fine grinding of barley and enzyme supplementation did not improve growth performance of pigs. In conclusion, fine grinding and enzyme supplementation does not appear to be an economical feed processing for growing pigs when barley is employed in the diets, while extrusion can be recommended as an effective feed processing technique for barley.

Screening and Characterization of a Novel Cellulase Gene from the Gut Microflora of Hermetia illucens Using Metagenomic Library

  • Lee, Chang-Muk;Lee, Young-Seok;Seo, So-Hyeon;Yoon, Sang-Hong;Kim, Soo-Jin;Hahn, Bum-Soo;Sim, Joon-Soo;Koo, Bon-Sung
    • Journal of Microbiology and Biotechnology
    • /
    • v.24 no.9
    • /
    • pp.1196-1206
    • /
    • 2014
  • A metagenomic fosmid library was constructed using genomic DNA isolated from the gut microflora of Hermetia illucens, a black soldier fly. A cellulase-positive clone, with the CS10 gene, was identified by extensive Congo-red overlay screenings for cellulase activity from the fosmid library of 92,000 clones. The CS10 gene was composed of a 996 bp DNA sequence encoding the mature protein of 331 amino acids. The deduced amino acids of CS10 showed 72% sequence identity with the glycosyl hydrolase family 5 gene of Dysgonomonas mossii, displaying no significant sequence homology to already known cellulases. The purified CS10 protein presented a single band of cellulase activity with a molecular mass of approximately 40 kDa on the SDS-PAGE gel and zymogram. The purified CS10 protein exhibited optimal activity at $50^{\circ}C$ and pH 7.0, and the thermostability and pH stability of CS10 were preserved at the ranges of $20{\sim}50^{\circ}C$ and pH 4.0~10.0. CS10 exhibited little loss of cellulase activity against various chemical reagents such as 10% polar organic solvents, 1% non-ionic detergents, and 0.5 M denaturing agents. Moreover, the substrate specificity and the product patterns by thin-layer chromatography suggested that CS10 is an endo-${\beta}$-1,4-glucanase. From these biochemical properties of CS10, it is expected that the enzyme has the potential for application in industrial processes.

Activation of Pathogenesis-related Genes by the Rhizobacterium, Bacillus sp. JS, Which Induces Systemic Resistance in Tobacco Plants

  • Kim, Ji-Seong;Lee, Jeongeun;Lee, Chan-Hui;Woo, Su Young;Kang, Hoduck;Seo, Sang-Gyu;Kim, Sun-Hyung
    • The Plant Pathology Journal
    • /
    • v.31 no.2
    • /
    • pp.195-201
    • /
    • 2015
  • Plant growth promoting rhizobacteria (PGPR) are known to confer disease resistance to plants. Bacillus sp. JS demonstrated antifungal activities against five fungal pathogens in in vitro assays. To verify whether the volatiles of Bacillus sp. JS confer disease resistance, tobacco leaves pre-treated with the volatiles were damaged by the fungal pathogen, Rhizoctonia solani and oomycete Phytophthora nicotianae. Pre-treated tobacco leaves had smaller lesion than the control plant leaves. In pathogenesis-related (PR) gene expression analysis, volatiles of Bacillus sp. JS caused the up-regulation of PR-2 encoding ${\beta}$-1,3-glucanase and acidic PR-3 encoding chitinase. Expression of acidic PR-4 encoding chitinase and acidic PR-9 encoding peroxidase increased gradually after exposure of the volatiles to Bacillus sp. JS. Basic PR-14 encoding lipid transfer protein was also increased. However, PR-1 genes, as markers of salicylic acid (SA) induced resistance, were not expressed. These results suggested that the volatiles of Bacillus sp. JS confer disease resistance against fungal and oomycete pathogens through PR genes expression.