• Title/Summary/Keyword: ${\beta}$-Cyclodextrin inclusion complex

Search Result 104, Processing Time 0.032 seconds

A Study on the Solubilization and Physical Properties of Sanjoinine-A (산조인 알카로이드의 가용화 및 물성에 관한 연구)

  • Sheu, Kwang-Gyou;Lee, Chi-Ho
    • Journal of Pharmaceutical Investigation
    • /
    • v.26 no.4
    • /
    • pp.257-261
    • /
    • 1996
  • The seeds of Zizyphus Jujuba have been used as an antianxiety agent for the treatment of insomnia from the earliest times. Sanjoinine-A, isolated from the seeds of Zizyphus Jujuba, have been found to have a minor tranquilizer activity. However this drug is poorly soluble in water. In order to increase the dissolution rate of sanjoinine-A, solid dispersions with PVP-MC and inclusion complex with ${\beta}-cyclodextrin$ were prepared and evaluated. All of these systems increased the dissolution rate of sanjoinine A comparing with sanjoinine-A free base. From pH-rate profile of sanjoinine-A at $60^{\circ}C$, it was found that sanjoinine A was relatively stable in acidic solution, but unstable in basic solution.

  • PDF

Design of New Parenteral Aqueous Formulations of Fluconazole by the Use of Modified Cyclodextrins (시클로덱스트린류를 이용한 새로운 플루코나졸 수성 주사제의 설계)

  • 이소윤;전인구
    • YAKHAK HOEJI
    • /
    • v.45 no.4
    • /
    • pp.357-365
    • /
    • 2001
  • The purpose of this study is to investigate the influence of cyclodextrins (CDs) and different acids on the solubility of fluconazole, and o formulate its more concentrated parenteral aqueous solution. Solubility studies of fluconazole with 7-CD, 2-hydroxypropyl-$\beta$-CD (HPCD), sulfobutyl ether $\beta$-CD (SBCD) and dimethyl-$\beta$-CD(DMCD) were performed. The aqueous solubility of fluconazole was measured in different concentrations of different acids with or without addition of CDs. Solubility of fluconazole increased in the rank order of $\beta$-CD$^1$H-NMR studies confirmed the formation of an inclusion complex of fluconazole with HPCD. It was also shown by the NMR studies that the complex formed was a 1:1 complex. Among the different acids used, maleic acid and phosphoric acid increased solubility of fluconazole. The lower the pH of solution is, the more fluconazole dissolved, regardless of acids. Addition of HPCD (50 mM) to acid solutions increased the solubility about two times. New fluconazole injections at a dose of 10 mg/ml could be prepared in aqueous solutions containing 10% HPCD or 15% SBCD. These parenteral solutions did not form any precipitates at 4$^{\circ}C$ and was very stable at elevated temperatures. These results demonstrate that it is possible to develop a parenteral aqueous solution of fluconazole with a smaller injection volume using HPCD or SBCD.

  • PDF

Retention Behavior and Separation of Phenol Derivatives through Cyclodextrin Complexes in Reversed-Phase Liquid Chromatography (역상 액체 크로마토그래피에서 씨클로덱스트린 착물을 이용한 페놀유도체들의 머무름 거동 및 분리)

  • Moon, Young-Ja;Kang, Sam-Woo
    • Analytical Science and Technology
    • /
    • v.11 no.3
    • /
    • pp.179-188
    • /
    • 1998
  • The capacity factor of fifteen phenol derivatives was determined with respect to the concentration of ${\alpha}$- or ${\beta}$-cyclodextrin [CD], the type as well as the content of organic solvent in the mobile phase, and the temperature. The effect of the inclusion complex formation between solutes and ${\alpha}$- or ${\beta}$-cyclodextrin on their retention and selectivity has been investigated. The inclusion effect of ${\beta}$-cyclodextrin was the most effective in aqueous methanol, whereas only a poor effect was observed in aqueous tetrahydrofuran and aqueous acetonitrile. A plot of the reciprocal of the capacity factor against $[CD]_T$ gives a straight line and the dissociation constant, $K_D$ of the inclusion complex can be calculated from the slope. It was possible to estimate the $k_D$ values in 100% water from a linear plot of $pK_D$ vs. water content in the solution by extrapolation. The separation factor, ${\alpha}$, of two compounds has been found to be affected not only by the $[CD]_T$ but also by their $K_D$ values. Under optimum conditions, some mixtures of phenol derivatives were able to separate successfully.

  • PDF

Study on the Inclusion Behavior of Sulfobutylether-β-Cyclodextrin with Perphenazine by Flow Injection Chemiluminescence

  • Shen, Minxia;Lv, Hairu;Song, Zhenghua
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.11
    • /
    • pp.3199-3205
    • /
    • 2013
  • The inclusion behavior of sulfobutylether-${\beta}$-cyclodextrin (SBE-${\beta}$-CD) with perphenazine (PPH) was first studied by flow injection (FI)-chemiluminescence (CL) analysis with proposed $lg[(I_0-I_s)/I_s]=lgK_{P-CD}+nlg[C_{PPH}]$ model and molecular docking. Results showed that a 1:1 complex of SBE-${\beta}$-CD/PPH could online form, with the formation constant $K_{P-CD}$ of $2.57{\times}10^7Lmol^{-1}$ at 298 K. The thermodynamic parameters showed that the inclusion behavior of SBE-${\beta}$-CD/PPH was a spontaneous process by hydrophobic interaction. The molecular docking results revealed PPH entered into the larger cavity of SBE-${\beta}$-CD with two hydrogen bonds. Based on the linear relationship of the decrement of luminol/SBE-${\beta}$-CD/PPH CL intensity against the logarithm of PPH concentration ranging from 0.03 to 30.0 ng $mL^{-1}$, the present FI-CL analysis using luminol/SBE-${\beta}$-CD/PPH system was successfully applied to PPH determination in biological fluids and tablets with recoveries from 94.5 to 105.6% and RSDs less than 2.6% (n = 5).

Increased Production of Digoxin by Digitoxin Biotransformation Using Cyclodextrin Polymer in Digitalis lanata Cell Cultures

  • Lee, Jong-Eun;Lee, Sang-Yoon;Kim, Dong-Il
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.4 no.1
    • /
    • pp.32-35
    • /
    • 1999
  • Addition of ${\beta}$-cyclodextrin (${\beta}$-CD) polymer during the biotransformation of digitoxin into digoxin using cell suspension cultures of Digitalis lanata enhanced the conversion yield. Digitoxin showed better adsorption to CD polymer compared to digoxin, so that the optimization of addition time was found to be necessary. In the case of adding CD polymer 24 hours after the feeding of substrate digitoxin, the highest digoxin production could be achieved. At this period, digitoxin was almost consumed by cells and productivity was proportionally enhanced according as the amount of substrate was increased. Immobilization of CD polymer did not promote the biotransformation. When 3.33 g/L of CD selective inclusion complex formation could be expected. Adsorption rate was found to be rapid and saturation was obtained within 10 hours of contact.

  • PDF

Studies on Dissolution Rate of Flurbiprofen from Solvent Deposition Systems (Flurbiprofen 용매침착물(溶媒沈着物)의 용출특성(溶出特性)에 관(關)한 연구(硏究))

  • Choi, Bo-Kyung;Yong, Jae-Ick
    • Journal of Pharmaceutical Investigation
    • /
    • v.15 no.3
    • /
    • pp.100-112
    • /
    • 1985
  • Dissolution characteristics of flurbiprofen solvent deposited on ${\alpha}-cyclodextrin$, ${\beta}-cyclodextrin$, lactose and corn starch were studied to evaluate the pharmaceutical aspects of solvent deposition method where drug was solvent deposited on the surface of excipients. In a solvent deposition system, the drug to excipient ratio and kind of excipient affect much on dissolution rates of flurbiprofen. The solvent deposition system formation was confirmed by scanning electron microscope. By increasing the amounts of matrix, it was possible to enhance the dissolution rate of flurbiprofen solvent deposition system. The amount of flurbiprofen dissolved from ${\beta}-cyclodextrin$ deposition system (1:10) at 60 minutes was enhanced 6.5 times in water and 28 times in simulated gastric juice compared with flurbiprofen alone. Flurbiprofen solvent deposited system (1:10) enhanced dissolution rate greater than inclusion complex and dispersion system.

  • PDF

Solubility Enhancement of Flavonols in the Inclusion Complex with Thioether-bridged Dimeric β-Cyclodextrins

  • Cho, Eunae;Jeong, Daham;Paik, Hyun-Dong;Jung, Seunho
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.8
    • /
    • pp.2487-2493
    • /
    • 2014
  • Dimeric ${\beta}$-cyclodextrin linked by a thioether bridge was synthesized from a reaction of mono-6-iodo-6-deoxy-${\beta}$-cyclodextrin with sodium sulfide, and the structure was analyzed using nuclear magnetic resonance spectroscopy and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. The effects of thioether-bridged dimeric ${\beta}$-CD on the aqueous solubility of flavonols (myricetin, quercetin, and kaempferol) were investigated by ultraviolet-visible spectroscopy. The aqueous solubility of myricetin, quercetin, and kaempferol were enhanced 33.6-, 12.4-, and 10.5-fold following the addition of 9 mM of thioether-bridged dimeric ${\beta}$-CD. In comparison, the aqueous solubility of myricetin, quercetin, and kaempferol were enhanced 5.4-, 3.3-, and 2.7-fold using the same concentration of monomeric ${\beta}$-cyclodextrin. Furthermore, the formation of flavonol/thioether-bridged dimeric ${\beta}$-CD inclusion complexes was confirmed with nuclear magnetic resonance, Fourier-transform infrared spectroscopy, differential scanning calorimetry, and scanning electron microscopy. The results showed that the nature of the complexes significantly differed from that of free flavonols. Herein, we suggest that the thioether-bridged dimeric ${\beta}$-CD can act as an effective complexing agent for flavonols.

Stability Evaluation of Vitamin-C Inclusion Complexes Prepared using Supercritical ASES Process (초임계 ASES 공정으로 제조된 Vitamin-C 포접복합체의 안정성 평가)

  • Yang, Jun-Mo;Kim, Seok-Yun;Han, Ji-Hyun;Jung, In-Il;Ryu, Jong-Hoon;Lim, Gio-Bin
    • KSBB Journal
    • /
    • v.21 no.2
    • /
    • pp.157-163
    • /
    • 2006
  • A supercritical fluid process, called aerosol solvent extraction system(ASES), is especially suitable to the pharmaceutical, cosmetic and food industries due to its environmentally-friendly, non-toxic and residual solvent-free properties. In particular, the application of the ASES process to the processing of thermo-labile bioactive compounds has received attention of many scientists and engineers because of its low-temperature operating conditions. Unstable substances such as Vitamin-C and Vitamin-A can be effectively protected from degradation during the preparation process, because the ASES process is free from oxygen and moisture. In this study, Vitamin-C was formulated with 2-hydroxypropyl-${\beta}$-cyclodextrin (HP-${\beta$-CD) for enhancement of Vitamin-C stability and bioavailability using the ASES process. To investigate the influence of the preparation process on the stability of Vitamin-C, Vitamin-C/HP-${\beta}$-CD inclusion complexes were prepared using both conventional solvent evaporation method and ASES process, and stored in a 50 mM phosphate buffer solution of pH 7.0 at $25^{\circ}C$ for 24 hours. From the experimental results, the stability of the Vitamin-C/HP-${\beta}$-CD inclusion complex prepared from the ASES process was found to be much higher than that of pure Vitamin-C and the Vitamin-C/HP-${\beta}$-CD inclusion complex prepared by the solvent evaporation method. The stability of Vitamin-C was observed to increase with the decrease of temperature at a constant pressure or with the increase of pressure at a constant temperature.

Molecular Modeling of Enantio-discrimination of α-Methoxy-α-trifluoromethylphenylacetic Acid (MTPA) by Cyclomaltoheptaose (β-Cyclodextrin) and 6-Amino-6-deoxy-cyclomaltoheptaose

  • Jung, Eun-Kyoung;Jeong, Karp-Joo;Lee, Sang-San;Kim, Jee-In;Jung, Seun-Ho
    • Bulletin of the Korean Chemical Society
    • /
    • v.24 no.11
    • /
    • pp.1627-1631
    • /
    • 2003
  • Molecular modeling was performed to comprehend the chiral recognition of ${\alpha}$-methoxy-${\alpha}$-trifluoromethylphenylacetic acid (MTPA) enantiomers by cyclomaltoheptaose (${\beta}$-cyclodextrin,${\beta}$-CD) and 6-amino-6-deoxy-cyclomaltoheptaose (am-${\beta}$-CD). Monte Carlo (MC) docking coupled to constant temperature molecular dynamics (MD) simulations was applied to the investigation for the ${\alpha}$-methoxy-${\alpha}$-trifluoromethylphenylacetic acid complexation with two different CDs in terms of the relative distribution of the interaction energies. The calculated results are finely correlated with the experimental observations in chiral recognition thermodynamics. Am-${\beta}$-CD as a host showed the superior enantio-discrimination ability to the native ${\beta}$-CD where the amino group of am-${\beta}$-CD was critically involved in enhancing the ability of chiral discrimination via the Coulombic interaction with MTPA.