DOI QR코드

DOI QR Code

Molecular Modeling of Enantio-discrimination of α-Methoxy-α-trifluoromethylphenylacetic Acid (MTPA) by Cyclomaltoheptaose (β-Cyclodextrin) and 6-Amino-6-deoxy-cyclomaltoheptaose

  • Jung, Eun-Kyoung (Department of Microbial Engineering, Kunkuk University) ;
  • Jeong, Karp-Joo (College of Information and Communication and Bio/Molecular Informatics Center, Kunkuk University) ;
  • Lee, Sang-San (Supercomputing Center in Korea Institute of Science and Technology Information) ;
  • Kim, Jee-In (College of Information and Communication and Bio/Molecular Informatics Center, Kunkuk University) ;
  • Jung, Seun-Ho (Department of Microbial Engineering, Kunkuk University)
  • Published : 2003.11.20

Abstract

Molecular modeling was performed to comprehend the chiral recognition of ${\alpha}$-methoxy-${\alpha}$-trifluoromethylphenylacetic acid (MTPA) enantiomers by cyclomaltoheptaose (${\beta}$-cyclodextrin,${\beta}$-CD) and 6-amino-6-deoxy-cyclomaltoheptaose (am-${\beta}$-CD). Monte Carlo (MC) docking coupled to constant temperature molecular dynamics (MD) simulations was applied to the investigation for the ${\alpha}$-methoxy-${\alpha}$-trifluoromethylphenylacetic acid complexation with two different CDs in terms of the relative distribution of the interaction energies. The calculated results are finely correlated with the experimental observations in chiral recognition thermodynamics. Am-${\beta}$-CD as a host showed the superior enantio-discrimination ability to the native ${\beta}$-CD where the amino group of am-${\beta}$-CD was critically involved in enhancing the ability of chiral discrimination via the Coulombic interaction with MTPA.

Keywords

References

  1. Amstrong, D. W.; Ward, T. J.; Armstrong, R. D.; Beesley, T. E.Science 1986, 232, 1132. https://doi.org/10.1126/science.3704640
  2. Redondo, J.; Blazquez, M. A.; Torrens, A. Chirality 1999, 11,694. https://doi.org/10.1002/(SICI)1520-636X(1999)11:9<694::AID-CHIR5>3.0.CO;2-W
  3. Hamilton, J. A.; Chen, L. J. Am. Chem. Soc. 1998, 110, 5833. https://doi.org/10.1021/ja00225a039
  4. Berthod, A.; Jin, H. L.; Beesley, T. E.; Duncan, J. D.; Amstrong,D. W. J. Pharm. Biomed. Anal. 1990, 8, 123. https://doi.org/10.1016/0731-7085(90)80018-K
  5. Pergaman; Comprehensive Supramolecular Chemistry in Cyclodextrin;Szejtli, J., Osa, T., Eds.; Oxford, U. K., 1996; Vol. 3.
  6. Rekharsky, M. V.; Inoue, Y. Chem. Rev. 1998, 98, 1875. https://doi.org/10.1021/cr970015o
  7. Roseman, M.; Jencks, W. P. J. Am. Chem. Soc. 1975, 97, 631 https://doi.org/10.1021/ja00836a027
  8. Connors, K. A. Chem. Rev. 1997, 97, 1325. https://doi.org/10.1021/cr960371r
  9. Rekharsky, M. V.; Inoue, Y. J. Am. Chem. Soc. 2002, 124, 813. https://doi.org/10.1021/ja010889z
  10. Kitae, T.; Takashima, H.; Kano, K. J. Inclusion Phenom. MacrocyclicChem. 1999, 33, 345. https://doi.org/10.1023/A:1008090113212
  11. Kitae, T.; Nakayama, T.; Kano, K. J. Chem. Soc., Perkin Trans. 21998, 207.
  12. Kano, T. J. Phys. Org. Chem. 1997, 10, 286. https://doi.org/10.1002/(SICI)1099-1395(199705)10:5<286::AID-POC915>3.0.CO;2-Y
  13. Brown, S. E.; Coates, J. H.; Duckworth, P. A.; Lincoln, S. F.;Easton, C. J.; May, B. L. J. Chem. Soc. 1993, 89, 1035.
  14. Dale, J. A.; Mosher, H. S. J. Am. Chem. Soc. 1973, 95, 512. https://doi.org/10.1021/ja00783a034
  15. Kim, H.; Choi, J.; Kim, H.-W.; Jung, S. Carbohydr. Res. 2002,337, 549. https://doi.org/10.1016/S0008-6215(02)00015-0
  16. Dauber-Osguthorpe, P.; Roberts, V. A.; Osguthorpe, D. J.; Wolff,J.; Genest, M.; Hagler, A. T. Proteins 1988, 4, 31. https://doi.org/10.1002/prot.340040106
  17. Betzel, C.; Saenger, W.; Hingerty, B. E.; Brown, G. M. J. Am.Chem. Soc. 1984, 106, 7545. https://doi.org/10.1021/ja00336a039
  18. Choi, Y.; Kang, S.; Yang, C.-H.; Kim, H.-W.; Jung, S. Bull.Korean Chem. Soc. 1999, 20, 753.
  19. Choi, Y.; Yang, C.-H.; Kim, H.-W.; Jung, S. Carbohydr. Res.2000, 326, 227. https://doi.org/10.1016/S0008-6215(00)00050-1
  20. Choi, Y.; Yang, C.-H.; Kim, H.-W.; Jung, S. Carbohydr. Res.2000, 328, 393. https://doi.org/10.1016/S0008-6215(00)00101-4
  21. Hart, T. N.; Read, R. J. Proteins 1992, 13, 206. https://doi.org/10.1002/prot.340130304
  22. Metropolis, N.; Rosenbluth, A. W.; Rosenbluth, M. N.; Teller, A.H.; Teller, E. J. Chem. Phys. 1953, 21, 1087. https://doi.org/10.1063/1.1699114
  23. Choi, Y.; Yang, C.-H.; Kim, H.-W.; Jung, S. J. Incl. Phenom.2001, 39, 71. https://doi.org/10.1023/A:1008196029391
  24. Kim, H.; Kang, S.; Jung, S. Bull. Korean Chem. Soc. 2001, 22,979.
  25. Kim, H.; Jeong, K.; Lee, S.; Jung, S. Bull. Korean Chem. Soc.2003, 24, 1.
  26. Berendsen, H. J. C.; Postma, J. P. M.; van Gunsteren, W. F.;DiNola, A.; Haak, J. R. J. Chem. Phys. 1984, 81, 3684. https://doi.org/10.1063/1.448118
  27. Luty, B. A.; Wasserman, Z. R.; Stouten, P. F. W.; Hodge, C. N.;Zacharias, M.; McCammon, J. A. J. Comp. Chem. 1995, 16,454. https://doi.org/10.1002/jcc.540160409
  28. Shiona, F.; Kusaka, H.; Wada, K.; Azami, H.; Yasunami, M.;Suzuki, T.; Hagiwara, H.; Ando, M. J. Org. Chem. 1998, 63,920. https://doi.org/10.1021/jo971529q
  29. Rekharsky, M. V.; Inoue, Y. J. Am. Chem. Soc. 2000, 122,4418. https://doi.org/10.1021/ja9921118

Cited by

  1. Molecular simulation of β-cyclodextrin inclusion complex with 2-phenylethyl alcohol vol.35, pp.3, 2009, https://doi.org/10.1080/08927020802419334
  2. Development of a Gesture-Based Molecular Visualization Tool Based on Virtual Reality for Molecular Docking vol.25, pp.10, 2003, https://doi.org/10.5012/bkcs.2004.25.10.1571
  3. pH-Dependent On-off Inclusion Complexation of Carboxymethylated Cyclosophoraoses with Neutral Red vol.26, pp.4, 2005, https://doi.org/10.5012/bkcs.2005.26.4.675
  4. Prediction of Chiral Discrimination by β-Cyclodextrins Using Grid-based Monte Carlo Docking Simulations vol.26, pp.5, 2003, https://doi.org/10.5012/bkcs.2005.26.5.769
  5. Molecular Dynamics Simulations on the Coplanarity of Quercetin Backbone for the Antioxidant Activity of Quercetin-3-monoglycoside vol.27, pp.2, 2003, https://doi.org/10.5012/bkcs.2006.27.2.325
  6. Monte Carlo Docking Study for the Role of Glycosidic Residues in Determining the Human 2G12 Antibody-Binding Specificity with Series of Manno-Disaccharides vol.28, pp.10, 2007, https://doi.org/10.5012/bkcs.2007.28.10.1811
  7. Separation of Madecassoside and Madecassic Acid Isomers by High Performance Liquid Chromatography Using β -Cyclodextrin as Mobile Phase Additive vol.29, pp.3, 2003, https://doi.org/10.5012/bkcs.2008.29.3.551