• 제목/요약/키워드: ${\beta}$ form crystal

검색결과 60건 처리시간 0.026초

Crystal Structure Analysis of Methyl 8-bromo-3-phenyl-5a,9a-dihydro-3H-chromen [4,3-c][1,2] isoxazole-3a(4H)-carboxylate

  • Malathy, P.;Sharmila, P.;Srinivasan, J.;Manickam, Bakthadoss;Aravindhan, S.
    • 통합자연과학논문집
    • /
    • 제9권2호
    • /
    • pp.103-112
    • /
    • 2016
  • The crystal structure of the potential active Methyl 8-bromo-3-phenyl-5a,9a-dihydro-3H-chromen [4,3-c][1,2] isoxazole-3a(4H)-carboxylate ($C_{18}H_{15}BrNO_4$) has been determined from single crystal X-ray diffraction technique. The title compound crystallizes in the triclinic space group Pī with unit cell dimension a=8.3129 (3) ${\AA}$, b=9.5847 (4) ${\AA}$ and c=11.1463(4) ${\AA}$ [${\alpha}=98.457(3)^{\circ}$, ${\beta}=102.806(2)^{\circ}$ and ${\gamma}=105.033(5)^{\circ}$]. Single crystals suitable for X-ray diffraction were obtained by slow evaporation method, the isoxazole and six membered pyran rings adopts envelope conformation. In the crystal, molecules are linked via pairs of inter molecular $C-H{\ldots}O$ hydrogen bonds to form dimmers.

The Crystal Structure of One Natural Compound Cyclo-(1,10-Docandiamino-11,20-Docanedioic) Amide (1,12-Diazacyclodocosane-2,11-Dione)

  • Wei, Wan-Xing;Pan, Yuan-Jiang
    • Bulletin of the Korean Chemical Society
    • /
    • 제23권11호
    • /
    • pp.1527-1530
    • /
    • 2002
  • 1,12-diazacyclodocosane-2,11-dione was first isolated from a plant Phyllanthus niruri Linn. Its structure has been determined by means of spectroscopy methods and X-ray crystallography. Two peptide groups in the big ring (lactam) are the main factors influencing intermolecular contacts. The hydrogen-bond interaction of these hydrophilic groups is observed in the crystal structure. Meanwhile, C-H···O hydrogen bonds in molecules contribute to the formation of the whole crystal. These two kinds of hydrogen-bond form six- member rings among molecules. This compound crystallizes in the triclinic space group P-1 with a= 9.588(1) $\AA$, b= $9.850(1)\AA$, c = $11.810(1)\AA$, $\alpha=$ 68.18(1)$^{\circ}C$ , $\beta=$ 84.98(1), $\gamma$ = 86.03(1)$^{\circ}C$ , V = $1030.66(17)\AA3$ , Z = 2. A disorder of five-member carbon chain in the whole ring is observed in the title compound. The bond angle 105.8(4) is determined for a extreme configuration C(14)-C(15)-C(16), and 117.7(10) for another extreme configuration C(14')-C(15')-C(16'). In this crystal, two molecules are tied each other by short intermolecular hydrogen bonds, the oxygen atom being tied by hydrogen bond to nitrogen atom of another two molecules. The NMR and IR spectral data coincides to the structure of the compound.

The Crystal and Molecular Structure of Sulfapyridine

  • Koo, Chung-Hoe;Lee, Young-Ja
    • Archives of Pharmacal Research
    • /
    • 제2권2호
    • /
    • pp.99-110
    • /
    • 1979
  • The crystal structure of sulfapyridine, $C_{11}H_{11}N_{3}O_{2}S$, has been determined by X-ray diffraction method. The compound crystallizees in the monoclinic space group C2/c with a = 12, 80(4), b= 11.72(4), $c= 15.36(5){\AA}, {\beta}= 94(3)^{\circ}$and Z = 8. A total of 1133 observed reflections were collected by the Weissenberg method with CuKaradiation. Structure was solved by the heavy atom method and refined by isostropic block-diagonal least-squares method to the R value of 0.14. The nitrogen in the pyridine ring of sulfapyridine is associated with an extra-annular hydrogen. The C (benzene ring) S-N-C (pyridine ring) group adopts the gauche form with a fonformational angle of $71^{\circ}$. The benzene ring are inclined at angle of $84^{\circ}.to the pyridine ring plane. Sulfapyridine shows three different hydrogen bonding in the crystal. They are two N-H...O hydrogen bonds with the distance of 2.90 and 2.98${\AA}$ respectively, and on N-H...N with the distance of 3.06 ${\AA}$.

  • PDF

Coordination of an Amino Alcohol Schiff Base Ligand Toward Cd(II)

  • Mardani, Zahra;Hakimi, Mohammad;Moeini, Keyvan;Mohr, Fabian
    • 대한화학회지
    • /
    • 제63권1호
    • /
    • pp.29-36
    • /
    • 2019
  • A potentially tetradentate Schiff base ligand, 2-((2-((pyridin-2-ylmethylene)amino)ethyl)amino)ethan-1-ol (PMAE), and its cadmium(II) complex, [$Cd(PMAE)I_2$] (1), were prepared and characterized by elemental analysis, FT-IR, Raman, $^1H$ and $^{13}C$ NMR spectroscopies and single-crystal X-ray diffraction. In the crystal structure of 1, the cadmium atom has a slightly distorted square-pyramidal geometry and a $CdN_3I_2$ environment in which the PMAE acts as an $N_3$-donor. In the crystal packing of the complex, the alcohol and amine groups of the coordinated ligands participate in hydrogen bonding with iodide ions and form $R^2{_2}(14)$ and $R^2{_2}(8)$ hydrogen bond motifs, respectively. In addition to the hydrogen bonds, the crystal network is stabilized by ${\pi}-{\pi}$ stacking interactions between pyridine rings. The thermodynamic stability of the isolated ligand and its cadmium complex along with their charge distribution patterns were studied by DFT and NBO analysis.

Structure Development and Dynamic Properties in High-speed Spinning of High Molecular Weight PEN/PET Copolyester Fibers

  • Im, Seung-Soon;Kim, Sung-Joong
    • Fibers and Polymers
    • /
    • 제3권1호
    • /
    • pp.18-23
    • /
    • 2002
  • The structure development and dynamic properties of fibers produced by high-speed spinning of P(EN-ET) random copolymers were investigated. The as-spun fibers were found to remain amorphous up to the spinning speed of 1500 m/min, and subsequent increases in speed resulted in the crystalline domains containing primarily $\alpha$ crystalline modification of PEN. The f modification was not found up to spinning speeds of 4500 m/min. On the other hand, annealing of constrained fibers spun at the 2100 m/min at 180,200, and 240^{\circ}C$ exhibited $\beta$-form crystalline structure, while the annealed fibers spun in 600-1500 m/min range exhibited dominantly $\alpha$-form. However $\beta$-form crystals disappeared above the spinning speed of 3000 m/min. With increasing spinning speeds from 600 to 4500 m/min, the storage modulus of as-spun fibers increased continuously and reached a value of about 10.4 spa at room temperature. The tan $\delta$curves showed the $\alpha$-relaxation peak at about 155-165^{\circ}C$, which is considered to correspond to the glass transition. The $\alpha$-relaxation peaks became smaller and broader, and shift to higher temperatures as the spinning speed increases, meaning that molecular mobility in the amorphous region is restricted by increased crystalline domain.

Biochemical and Structural Analysis of Hormone-sensitive Lipase Homolog EstE7: Insight into the Stabilized Dimerization of HSL-Homolog Proteins

  • Nam, Ki-Hyun;Park, Sung-Ha;Lee, Won-Ho;Hwang, Kwang-Yeon
    • Bulletin of the Korean Chemical Society
    • /
    • 제31권9호
    • /
    • pp.2627-2632
    • /
    • 2010
  • Hormone sensitive lipase (HSL) plays a major role in energy homeostasis and lipid metabolism. Several crystal structures of HSL-homolog proteins have been identified, which has led to a better understanding of its molecular function. HSL-homolog proteins exit as both monomer and dimer, but the biochemical and structural basis for such oligomeric states has not been successfully elucidated. Therefore, we determined the crystal structure of HSL-homolog protein EstE7 from a metagenome library at $2.2\;{\AA}$ resolution and characterized the oligomeric states of EstE7 both structurally and biochemically. EstE7 protein prefers the dimeric state in solution, which is supported by its higher enzymatic activity in the dimeric state. In the crystal form, EstE7 protein shows two-types of dimeric interface. Specifically, dimerization via the external ${beta}8$-strand occurred through tight association between two pseudosymmetric folds via salt bridges, hydrogen bonds and van der Waals interactions. This dimer formation was similar to that of other HSL-homolog protein structures such as AFEST, BEFA, and EstE1. We anticipate that our results will provide insight into the oligomeric state of HSL-homolog proteins.

Crystal Structure of Byakangelicin ($C_{17}H_{18}O_{7}$)

  • Kim, Yang-Bae;Oh, Yong-Ho;Park, Il-Yeung;Shin, Kuk-Hyun
    • Archives of Pharmacal Research
    • /
    • 제25권3호
    • /
    • pp.275-279
    • /
    • 2002
  • The crystal structure of byakangelicin, one of furanocoumarin aldose reductase inhibitors, was determined by X-ray diffraction method. The crystal is triclinic, with a=8.114(1), b=10.194(1), $c=11.428(1)\AA,{\;}{\alpha}=111.50(1),{\}{\beta}=95.57(1),{\}{\gamma}=112.52(1)^{circ},{\;}D_x=1.41,{\;}D_m=1.39{\;}g/cm^3$, space group P1 and Z=2. The intensity data were collected by ${\omega}-2{\theta}$ scan method with $CuK_{a}$ radiations. The structure was solved by direct method and refined by full matrix least-squares procedure to the final R-value of 0.056. There are two molecules with different conformations in an asymmetric unit. The molecules are kept by two intermolecular O-HO type hydrogen bonds and van der Waal's forces in the crystal. The absolute configuration of the molecules was estimated to S-form by the 'Eta refinement' procedure.

Synthesis and structure analysis of the bis(dicyclohexylammonium) chromate dihydrate complex, [(C6H11)2NH2]2[CrO4]·2H2O

  • Kim, Chong-Hyeak;Moon, Hyoung-Sil;Lee, Sueg-Geun
    • 분석과학
    • /
    • 제20권5호
    • /
    • pp.448-451
    • /
    • 2007
  • A new bis(dicyclohexylammonium) chromate dihydrate complex, $[(C_6H_{11})_2NH_2]_2[CrO_4]{\cdot}2H_2O$, (I), has been synthesized and its structure analyzed by FT-IR, EDS, elemental analysis, ICP-AES, and single crystal X-ray diffraction methods. The Cr(VI) complex (I) is tetragonal system, I${\bar{4}}$2d space group with a = 12.5196(1), b = 12.5196(1), c = $17.3796(3){\AA}$, a = ${\beta}$ = ${\gamma}$ = $90^{\circ}$, V = $2724.09(6){\AA}^3$, Z = 4. The crystal structure of complex (I) consists of tetrahedral chromate $[CrO_4]^{2-}$ anion, two organic dicyclohexylammonium $[(C_6H_{11})_2NH_2]^+$ cations and two lattice water molecules. The chromate anion and protonated dicyclohexylammonium cation is mainly constructed through the ionic bond. The cyclohexylammonium rings of the dicyclohexylammonium cation take the chair form and vertical configuration with each other. The N-H${\cdot}$O and O-H${\cdot}$O hydrogen bond networks between the $N_{dicyclohexylammonium}$, $O_{water}$ and $O_{chromate}$ atom lead to self-assembled molecular conformation and stabilize the crystal structure.

High Level of Soluble Expression in Escherichia coli and Characterisation of the Cloned Bacillus thuringiensis Cry4Ba Domain III Fragment

  • Chayaratanasin, Poramed;Moonsom, Seangdeun;Sakdee, Somsri;Chaisri, Urai;Katzenmeier, Gerd;Angsuthanasombat, Chanan
    • BMB Reports
    • /
    • 제40권1호
    • /
    • pp.58-64
    • /
    • 2007
  • Similar to the other known structures of Bacillus thuringiensis Cry $\delta$-endotoxins, the crystal structure of the 65-kDa activated Cry4Ba toxin comprises three domains which are, from the N- to C-terminus, a bundle of $\alpha$-helices, a three-$\beta$-sheet domain, and a $\beta$-sandwich. To investigate the properties of the C-terminal domain III in isolation from the rest of the toxin, the cloned Cry4Ba-domain III was over-expressed as a 21-kDa soluble protein in Escherichia coli, which cross-reacted with anti-Cry4Ba domain III monoclonal antibody. A highly-purified domain III was obtained in a monomeric form by ion-exchange and size-exclusion FPLC. Circular dichroism spectroscopy indicated that the isolated domain III fragment distinctly exists as a $\beta$-sheet structure, corresponding to the domain III structure embodied in the Cry4Ba crystal structure. In vitro binding analysis via immuno-histochemical assay revealed that the Cry4Ba-domain III protein was able to bind to the apical microvilli of the susceptible Stegomyia aegypti larval midguts, albeit at lower-binding activity when compared with the full-length active toxin. These results demonstrate for the first time that the C-terminal domain III of the Cry4Ba mosquito-larvicidal protein, which can be isolated as a native folded monomer, conceivably participates in toxin-receptor recognition.

그라파이트 블록을 원료로써 재활용한 β-SiC 분말 합성 (Synthesis of β-SiC Powder using a Recycled Graphite Block as a Source)

  • 민닷 응우옌;방정원;김수룡;김영희;정은진;황규홍;권우택
    • 자원리싸이클링
    • /
    • 제26권1호
    • /
    • pp.16-21
    • /
    • 2017
  • 본 연구는 SiC 결정 성장을 위한 원료 분말 합성법에 관한 것이다. ${\beta}-SiC$ 분말들은 높은 온도 조건(>$1400^{\circ}C$)에서 실리콘 분말과 탄소 분말의 반응에 의해서 합성 된다. 이 반응은 진공 상태(또는 Ar 가스 분위기)에서 실리콘+탄소 혼합물이 반응하고 다결정의 SiC 분말을 형성하기 충분한 횟수를 거쳐 그라파이트 도가니 안에서 진행된다. 최종 결과물의 특성들은 X-ray 회절, SEM/EDS, 입도 분석 및 ICP-OES을 통해 분석되었다. 또한, 최종 결과물의 순도는 the Korean Standard KS L 1612에 의거해서 분석했다.