DOI QR코드

DOI QR Code

Synthesis of β-SiC Powder using a Recycled Graphite Block as a Source

그라파이트 블록을 원료로써 재활용한 β-SiC 분말 합성

  • Nguyen, Minh Dat (Energy Materials Centre, Korea Institute of Ceramic Engineering and Technology) ;
  • Bang, Jung Won (Energy Materials Centre, Korea Institute of Ceramic Engineering and Technology) ;
  • Kim, Soo-Ryoung (Energy Materials Centre, Korea Institute of Ceramic Engineering and Technology) ;
  • Kim, Younghee (Energy Materials Centre, Korea Institute of Ceramic Engineering and Technology) ;
  • Jung, Eunjin (Energy Materials Centre, Korea Institute of Ceramic Engineering and Technology) ;
  • Hwang, Kyu Hong (Department of Ceramic Engineering, Gyeongsang National Univ.) ;
  • Kwon, Woo-Teck (Energy Materials Centre, Korea Institute of Ceramic Engineering and Technology)
  • Received : 2016.08.23
  • Accepted : 2016.12.28
  • Published : 2017.02.28

Abstract

This paper relates to the synthesis of a source powder for SiC crystal growth. ${\beta}-SiC$ powders are synthesized at high temperatures (>$1400^{\circ}C$) by a reaction between silicon powder and carbon powder. The reaction is carried out in a graphite crucible operating in a vacuum ambient (or Ar gas) over a period of time sufficient to cause the Si+C mixture to react and form poly-crystalline SiC powder. End-product characterizations are pursued with X-ray diffraction analysis, SEM/EDS, particle size analyzer and ICP-OES. The purity of the end-product was analyzed with the Korean Standard KS L 1612.

본 연구는 SiC 결정 성장을 위한 원료 분말 합성법에 관한 것이다. ${\beta}-SiC$ 분말들은 높은 온도 조건(>$1400^{\circ}C$)에서 실리콘 분말과 탄소 분말의 반응에 의해서 합성 된다. 이 반응은 진공 상태(또는 Ar 가스 분위기)에서 실리콘+탄소 혼합물이 반응하고 다결정의 SiC 분말을 형성하기 충분한 횟수를 거쳐 그라파이트 도가니 안에서 진행된다. 최종 결과물의 특성들은 X-ray 회절, SEM/EDS, 입도 분석 및 ICP-OES을 통해 분석되었다. 또한, 최종 결과물의 순도는 the Korean Standard KS L 1612에 의거해서 분석했다.

Keywords

References

  1. Wang, H., Yan, C. F., Kong, H. K., Chen, J. J., Xin, J., and Shi, E. W., 2012 : Synthesis of Source Powder for SiC Crystal Growth Using High Purity Silicon and Carbon Powder, Advanced Materials Research, Vol. 529, pp. 64-68. https://doi.org/10.4028/www.scientific.net/AMR.529.64
  2. Sakwe, S. A., Stockmeier, M., Hens, P., Mueller, R., Queren, D., Kunecke, U., Konias, K., Hock, R., Magerl, A., Pons, M., Winnacker, A., and Wellmann, P., 2008 : Bulk Growth of SiC-Review on Advances of SiC Vapor Growth for Improved Doping and Systematic Study on Dislocation Evolution, Phys. Status. Solidi. B, Vol. 245, pp. 1239-1256. https://doi.org/10.1002/pssb.200743520
  3. Barrett, D. L., Chen, J., Hopkins, R. H., and Johnson, C. J., 2009 : Method for Synthesizing Ultrahigh-purity Silicon Carbide, PCT/US2006/046673.
  4. Yang, Y., Lin, Z. M., and Li, J. T., 2009 : Synthesis of SiC by silicon and carbon combustion in air, J. Eur. Ceram. Soc., 29, 175-180. https://doi.org/10.1016/j.jeurceramsoc.2008.06.013
  5. Kwon, W. T., Kim, S. R., Kim, Y. H., Lee, Y. J., Won, J. Y., and Oh, S. C., 2014 : Effect of Silicon Particle Size on Synthesis and Crystallinity of ${\beta}$-Silicon Carbide Particles, Defect and Diffusion Forum, Vol. 353, pp. 239-243. https://doi.org/10.4028/www.scientific.net/DDF.353.239
  6. Lefort, A., Parizet, M. J., El-Fassi, S. E., and Abbaoui, M., 1993 : Erosion of graphite electrodes, J. Phys. D: Appl. Phys., Vol. 26, pp. 1239-1243. https://doi.org/10.1088/0022-3727/26/8/013
  7. Kurzeja, R., 1976 : Protective Coating for Graphite Electrodes, US596,021.
  8. Haase, V., Kirschstein, G. et al., 1986 : Gmelin Handbook of Inorganic Chemistry, 8th Edition (Springer-Verlag Berlin Heidelberg GmbH 1986), pp. 1-3.
  9. Taylor, A. and Laidler, D. S., 1950 : The Formation and Crystal Structure of Silicon Carbide, Brit. J. Appl. Phys., 1(7), pp. 174-181. https://doi.org/10.1088/0508-3443/1/7/303