Browse > Article
http://dx.doi.org/10.7844/kirr.2017.26.1.16

Synthesis of β-SiC Powder using a Recycled Graphite Block as a Source  

Nguyen, Minh Dat (Energy Materials Centre, Korea Institute of Ceramic Engineering and Technology)
Bang, Jung Won (Energy Materials Centre, Korea Institute of Ceramic Engineering and Technology)
Kim, Soo-Ryoung (Energy Materials Centre, Korea Institute of Ceramic Engineering and Technology)
Kim, Younghee (Energy Materials Centre, Korea Institute of Ceramic Engineering and Technology)
Jung, Eunjin (Energy Materials Centre, Korea Institute of Ceramic Engineering and Technology)
Hwang, Kyu Hong (Department of Ceramic Engineering, Gyeongsang National Univ.)
Kwon, Woo-Teck (Energy Materials Centre, Korea Institute of Ceramic Engineering and Technology)
Publication Information
Resources Recycling / v.26, no.1, 2017 , pp. 16-21 More about this Journal
Abstract
This paper relates to the synthesis of a source powder for SiC crystal growth. ${\beta}-SiC$ powders are synthesized at high temperatures (>$1400^{\circ}C$) by a reaction between silicon powder and carbon powder. The reaction is carried out in a graphite crucible operating in a vacuum ambient (or Ar gas) over a period of time sufficient to cause the Si+C mixture to react and form poly-crystalline SiC powder. End-product characterizations are pursued with X-ray diffraction analysis, SEM/EDS, particle size analyzer and ICP-OES. The purity of the end-product was analyzed with the Korean Standard KS L 1612.
Keywords
${\beta}-SiC$ powder; direct carbonization; recycled graphite; crystal growth;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Yang, Y., Lin, Z. M., and Li, J. T., 2009 : Synthesis of SiC by silicon and carbon combustion in air, J. Eur. Ceram. Soc., 29, 175-180.   DOI
2 Kwon, W. T., Kim, S. R., Kim, Y. H., Lee, Y. J., Won, J. Y., and Oh, S. C., 2014 : Effect of Silicon Particle Size on Synthesis and Crystallinity of ${\beta}$-Silicon Carbide Particles, Defect and Diffusion Forum, Vol. 353, pp. 239-243.   DOI
3 Lefort, A., Parizet, M. J., El-Fassi, S. E., and Abbaoui, M., 1993 : Erosion of graphite electrodes, J. Phys. D: Appl. Phys., Vol. 26, pp. 1239-1243.   DOI
4 Kurzeja, R., 1976 : Protective Coating for Graphite Electrodes, US596,021.
5 Haase, V., Kirschstein, G. et al., 1986 : Gmelin Handbook of Inorganic Chemistry, 8th Edition (Springer-Verlag Berlin Heidelberg GmbH 1986), pp. 1-3.
6 Taylor, A. and Laidler, D. S., 1950 : The Formation and Crystal Structure of Silicon Carbide, Brit. J. Appl. Phys., 1(7), pp. 174-181.   DOI
7 Wang, H., Yan, C. F., Kong, H. K., Chen, J. J., Xin, J., and Shi, E. W., 2012 : Synthesis of Source Powder for SiC Crystal Growth Using High Purity Silicon and Carbon Powder, Advanced Materials Research, Vol. 529, pp. 64-68.   DOI
8 Barrett, D. L., Chen, J., Hopkins, R. H., and Johnson, C. J., 2009 : Method for Synthesizing Ultrahigh-purity Silicon Carbide, PCT/US2006/046673.
9 Sakwe, S. A., Stockmeier, M., Hens, P., Mueller, R., Queren, D., Kunecke, U., Konias, K., Hock, R., Magerl, A., Pons, M., Winnacker, A., and Wellmann, P., 2008 : Bulk Growth of SiC-Review on Advances of SiC Vapor Growth for Improved Doping and Systematic Study on Dislocation Evolution, Phys. Status. Solidi. B, Vol. 245, pp. 1239-1256.   DOI