Browse > Article

Structure Development and Dynamic Properties in High-speed Spinning of High Molecular Weight PEN/PET Copolyester Fibers  

Im, Seung-Soon (Department of Polymer and Fiber Engineering, College of Engineering, Hanyang University)
Kim, Sung-Joong (Kolon Industrial Materials Technology Team, Kumi Plant, Kolon Industrial Inc)
Publication Information
Fibers and Polymers / v.3, no.1, 2002 , pp. 18-23 More about this Journal
Abstract
The structure development and dynamic properties of fibers produced by high-speed spinning of P(EN-ET) random copolymers were investigated. The as-spun fibers were found to remain amorphous up to the spinning speed of 1500 m/min, and subsequent increases in speed resulted in the crystalline domains containing primarily $\alpha$ crystalline modification of PEN. The f modification was not found up to spinning speeds of 4500 m/min. On the other hand, annealing of constrained fibers spun at the 2100 m/min at 180,200, and 240^{\circ}C$ exhibited $\beta$-form crystalline structure, while the annealed fibers spun in 600-1500 m/min range exhibited dominantly $\alpha$-form. However $\beta$-form crystals disappeared above the spinning speed of 3000 m/min. With increasing spinning speeds from 600 to 4500 m/min, the storage modulus of as-spun fibers increased continuously and reached a value of about 10.4 spa at room temperature. The tan $\delta$curves showed the $\alpha$-relaxation peak at about 155-165^{\circ}C$, which is considered to correspond to the glass transition. The $\alpha$-relaxation peaks became smaller and broader, and shift to higher temperatures as the spinning speed increases, meaning that molecular mobility in the amorphous region is restricted by increased crystalline domain.
Keywords
PEN/PET copolymer; High-speed spinning; Annealing; Crystal structure; Dynamic property;
Citations & Related Records

Times Cited By Web Of Science : 5  (Related Records In Web of Science)
Times Cited By SCOPUS : 1
연도 인용수 순위
1 S. Z. D. Cheng and B. Wunderlich, Macromolecules, 21, 789 (1988)   DOI   ScienceOn
2 C. S. Cruz, F. J. B. Calleja, H. G. Zachmann, and D. Chen, J. Mater. Sci., 27, 2161 (1992)   DOI
3 X. Lu and A. H. Windle, Polymer, 36, 451 (1995)   DOI   ScienceOn
4 J. C. Kim, M. Cakmak, and X. Zhou, Polymer, 39, 4225 (1998)   DOI   ScienceOn
5 J. Jager, J. A. Juijn, C. J. M. Van Den Heuvel, and R. A. Huijts, J. Appl. Polym. Sci., 57, 1429 (1995)   DOI   ScienceOn
6 G. Wu, Q. Li, and J. A. Cuculo, Polymer, 41, 8139 (2000)   DOI   ScienceOn
7 I. Ouchi, H. Aoki, S. Shimotsuma, T. Asai, and M. Hosoi, Proc. 17th Cong. Mater. Res., Japan, 217 (1974)
8 S. Buchnner, D. Wiswe, and H. G. Zachmann, Polymer, 30, 480 (1989)   DOI   ScienceOn
9 K. Miyata, T. Kikutani, and N. Okui, J. Appl. Polym. Sci., 65, 1415 (1997)   DOI   ScienceOn
10 D. Chen and H. G. Zachmann, Polymer, 32, 1612 (1991)   DOI   ScienceOn
11 A. Nagai, Y. Murase, T. Kuroda, M. Matsui, Y. Mitsuishi, and T. Miyamoto, Sen-i Gakkaishi, 51, 478 (1995)
12 R. Jakeways, J. L. Klein, and I. M. Ward, Polymer, 37, 3761 (1996)   DOI   ScienceOn
13 M. E. Stewart, A. J. Cox, and D. M. Taylor, Polymer, 34, 4060 (1993)   DOI   ScienceOn
14 M. Cakmak and J. C. Kim, J. Appl. Polym. Sci., 64, 729 (1997)   DOI   ScienceOn
15 Z. Mencik, Chem. Prum., 17, 78 (1967)
16 H. W. Jun, S. H. Chae, S. S. Park, H. S. Myung, and S. S. Im, Polymer, 40, 1473 (1999)   DOI   ScienceOn
17 A. K. Taraiya, A. P. Unwin, and I. M. Ward, J. Polym. Sci., Part B, Polym. Phys., 26, 817 (1988)   DOI   ScienceOn
18 H. G. Zachmann, D. Wiswe, R. Gehrke, and C. Riekel, Makromol. Chem. Suppl., 12, 175 (1985)   DOI
19 S. J. Kim, J. Y. Nam, Y. M. Lee, and S. S. Im, Polymer, 40, 5623 (1999)   DOI   ScienceOn
20 Y. $\ddot{U}lcer$and M. Cakmak, Polymer, 35, 5651 (1994)   DOI   ScienceOn
21 H. Zhang, A. Rankin, and I. M. Ward, Polymer, 37, 1079 (1996)   DOI   ScienceOn