• Title/Summary/Keyword: ${\alpha}$-amylase activity

Search Result 563, Processing Time 0.023 seconds

Comparison of Endo-, Exo-Cellular Enzyme Activity for New Strains of Hypsizygus marmoreus (느티만가닥버섯의 신품종에 대한 endo-, exo-cellular 효소 활성도의 비교)

  • Lee, Chang-Yun;Song, Ho-Sung;Ro, Hyeon-Su;Woo, Ju-Ri;You, Young-Hyun;Kim, Jong-Guk
    • Journal of Life Science
    • /
    • v.22 no.6
    • /
    • pp.837-843
    • /
    • 2012
  • This study was carried out to investigate the morphological and physiological characteristics of six new cultivars of Hypsizygus marmoreus (Hm) and measure endo-, exo-cellular enzyme-specific activity. The domestic wild stain (Hm3-10) and commercial strain in Japan (Hm1-1) were mated by crossing monokaryon mycelia. We gained 58 strains from one of 400 crosses through the $1^{st}$ cultivation experiment, and selected six strains from one of 58 strains through the $2^{nd}$ cultivation experiment. When six of the selected new strains were grown during several spawn culture periods (60, 70, 80, 90, and 100 days), a spawn culture period of more 80 days was considered to be excellent as being shorter than 19~20 days. Therefore, we determined the period of spawn culture as 80 days. Three strains such as Hm15-3, Hm15-4, and Hm17-5 showed an excellent result. When endo-cellular enzyme activity measured eight strains, we obtained a result of that specific activity of ${\alpha}$-amylase at the highest as 73.9~102.2 unit/mg protein, and chitinase is lower than ${\alpha}$-amylase at 8.1~13.1 unit/mg protein. When exo-cellular enzyme activity measured eight strains, we determined the result of that specific activity of ${\alpha}$-amylase is the highest at 5,292~1,184 unit/mg protein, and CMCase and xylanase were 1,140~245 unit/mg protein, 94~575 unit/mg protein, compared to each other. However, the enzyme activity of ${\beta}$-glucosidase and chitinase is low.

Critical Factors to High Thermostability of an ${\alpha}$-Amylase from Hyperthermophilic Archaeon Thermococcus onnurineus NA1

  • Lim, Jae-Kyu;Lee, Hyun-Sook;Kim, Yun-Jae;Bae, Seung-Seob;Jeon, Jeong-Ho;Kang, Sung-Gyun;Lee, Jung-Hyun
    • Journal of Microbiology and Biotechnology
    • /
    • v.17 no.8
    • /
    • pp.1242-1248
    • /
    • 2007
  • Genomic analysis of a hyperthermophilic archaeon, Thermococcus onnurineus NA1 [1], revealed the presence of an open reading frame consisting of 1,377 bp similar to ${\alpha}$-amylases from Thermococcales, encoding a 458-residue polypeptide containing a putative 25-residue signal peptide. The mature form of the ${\alpha}$-amylase was cloned and the recombinant enzyme was characterized. The optimum activity of the enzyme occurred at $80^{\circ}C$ and pH 5.5. The enzyme showed a liquefying activity, hydrolyzing maltooligosaccharides, amylopectin, and starch to produce mainly maltose (G2) to maltoheptaose (G7), but not pullulan and cyclodextrin. Surprisingly, the enzyme was not highly thermostable, with half-life ($t_{1/2}$) values of 10 min at $90^{\circ}C$, despite the high similarity to ${\alpha}$-amylases from Pyrococcus. Factors affecting the thermostability were considered to enhance the thermo stability. The presence of $Ca^{2+}$ seemed to be critical, significantly changing $t_{1/2}$ at $90^{\circ}C$ to 153 min by the addition of 0.5 mM $Ca^{2+}$. On the other hand, the thermostability was not enhanced by the addition of $Zn^{2+}$ or other divalent metals, irrespective of the concentration. The mutagenetic study showed that the recovery of zinc-binding residues (His175 and Cys189) enhanced the thermo stability, indicating that the residues involved in metal binding is very critical for the thermostability.

Nutritional Characteristics and Screening of Biological Activity of Crataegi fructus (산사 영양성분 분석 및 생리활성 탐색)

  • Park, Sung-Jin;Han, Kyung-Soon;Yoo, Seon-Mi
    • The Korean Journal of Food And Nutrition
    • /
    • v.25 no.3
    • /
    • pp.413-418
    • /
    • 2012
  • The purpose of this study is to determine the possibility of using Crataegi fructus as a natural food source. To accomplish this purpose, the contents of general and biological activities were measured. The contents of carbohydrate, crude protein, crude lipid and ash are 85.6%, 2.4%, 1.9% and 0.4%, respeectively. Further, the calories of Crataegi fructus was 369.1 kcal. The contents of essential and non-essential amino acids were 852.26 mg and 1,178.29 mg, respeectively. The K was the largest mineral followed by Ca, P, Mg, which means Crataegi fructus is an alkali material. Crataegi fructus extracts slightly(17.6~32.8) inhibited ${\alpha}$-glucosidase activity. However, there is no inhibitory activity against ${\alpha}$-amylase. In terms of proteslytic activity, Crataegi fructus extracts showed a strong activity than pancreatin(used as a positive control). These results indicate that Crataegi fructus can be used as a natural resource for material aiding digestion.

Anti-diabetic and Hypoglycemic Effect of Eleutherococcus spp. (오갈피나무 속(屬) 식물의 항당뇨 및 혈당강하 효과)

  • Lim, Sang-Hyun;Park, Yu-Hwa;Kwon, Chang-Ju;Ham, Hun-Ju;Jeong, Haet-Nim;Kim, Kyung-Hee;Ahn, Young-Sup
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.39 no.12
    • /
    • pp.1761-1768
    • /
    • 2010
  • Hypoglycemic effect through activity inhibition of $\alpha$-glucosidase and $\alpha$-amylase was evaluated using leaves of Eleutherococcus senticosu, Eleutherococcus gracilistylus, Eleutherococcus sieboldianus and Eleutherococcus sessiliflorus which belong to Acanthopanax sessiliflorus genus. As a result of measuring $\alpha$-glucosidase activity inhibition, extract of Eleutherococcus gracilistylus showed around 43.38% of activity inhibition compared with acarbose and extract of Eleutherococcus senticosu showed 41.24% inhibitory effect. As a result of measuring $\alpha$-amylase activity inhibition, acarbose showed 73.25% of activity inhibition in 10 mg/mL concentration, and the extract of Eleutherococcus senticosu leaves showed 91.90% higher activity inhibition compared with acarbose. Also, after subjects in a model were induced diabetes with streptozotocin (STZ) intake plant extract from Acanthopanax sessiliflorus for 2 weeks, effect of improving blood glucose level and fat was examined. In all groups with specimen, Eleutherococcus senticosu (T1), Eleutherococcus gracilistylus (T2), Eleutherococcus sieboldianus (T3) and Eleutherococcus sessiliflorus (T4), blood glucose level was significantly decreased compared with that in control group (C). In an experiment of examining changes in fat concentration in blood, total cholesterol content increased in a control group compared with a normal, while in T1, T3 and T4, it decreased significantly compared with the control group. As for HDL-cholesterol, it significantly increased in all diabetes induced groups compared with the normal group, and in T3, it increased the most significantly by 55.61% compared with the control group. In case of LDL-cholesterol, specific difference between the normal group and the control group was not found; however, significant increase was detected in T2 and T3, whereas in T1 and T4, it decreased significantly compared with the control group. As for triglyceride, its concentration increased in the control group like total cholesterol. It decreased 60.16% in T3, 60.80% in T4 and 50.16% in T1 compared with the control group. As a result of measuring the concentration of triglyceride in extracted liver, the control group showed significant increase compared with the normal group, whereas T1 and T2 showed significant decrease compared with the normal group. The above results show that extracts from Acanthopanax sessiliflorus genus are effective for hypoglycemic and improving fat metabolism due to diabetes.

Isolation and Characterization of Some Promoter Sequences from Leuconostoc mesenteroides SY2 Isolated from Kimchi

  • Park, Ji Yeong;Jeong, Seon-Ju;Kim, Jeong A;Kim, Jeong Hwan
    • Journal of Microbiology and Biotechnology
    • /
    • v.27 no.9
    • /
    • pp.1586-1592
    • /
    • 2017
  • Some promoters were isolated and characterized from the genome of Leuconostoc mesenteroides SY2, an isolate from kimchi, a Korean traditional fermented vegetable. Chromosomal DNA of L. mesenteroides SY2 was digested with Sau3AI and ligated with BamHI-cut pBV5030, a promoter screening vector containing a promoterless cat-86. Among E. coli transformants (TFs) resistant against Cm (chloramphenicol), 17 were able to grow in the presence of $1,000{\mu}g/ml$ Cm and their inserts were sequenced. Transcription start sites were examined for three putative promoters (P04C, P25C, and P33C) by primer extension. Four putative promoters were inserted upstream of a promoterless ${\alpha}$-amylase reporter gene in $pJY15{\alpha}$. ${\alpha}$-Amylase activities of E. coli TFs containing $pJY15{\alpha}$ (control, no promoter), $pJY03{\alpha}$ ($pJY15{\alpha}$ with P03C), $pJY04{\alpha}$ (with P04C), $pJY25{\alpha}$ (with P25C), and $pJY33{\alpha}$ (with P33C) were 66.9, 78.7, 122.1, 70.8, and 99.3 U, respectively. Cells harboring $pJY04{\alpha}$ showed 1.8 times higher activity than the control. Some promoters characterized in this study might be useful for construction of food-grade expression vectors for Leuconostoc sp. and related lactic acid bacteria.

Action of Crude Amylolytic Enzymes Extracted from Sweet Potatoes and Amylolytic Enzymes on the Sweet Potato Starches (고구마 전분에 대한 고구마 조효소와 전분분해 효소의 작용에 관하여)

  • Shin, Mal-Shick;Ahn, Seung-Yo
    • Korean Journal of Food Science and Technology
    • /
    • v.18 no.6
    • /
    • pp.431-436
    • /
    • 1986
  • The action of crude amylolytic enzymes extracted from Wonki and Chunmi sweet potatoes, ${\alpha}-amylase$, and ${\beta}-amylase$ on the sweet potato starches from Wonki (dry type) and Chunmi (moist type) were studied. The activity of crude amylolytic enzyme extracted from Wonki was higher than that extracted from Chunmi. The content of reducing sugar released from the reaction between crude amylolytic enzyme and Chunmi starch preheated at $70^{\circ}C$ was higher, but that preheated at $95^{\circ}C$ was lower than that from Wonki starch preheated at the same temperature. The activites of ${\alpha}-amylase$ and ${\beta}-amylase$ on the Wonki starch were higher than those of the Chunmi starch at the same conditions. Iodine affinity of amylolytic enzyme-treated starch was decreased and enzyme treated starch granule shape was found with porous structure having inner layers. X-ray diffraction patterns of amylolytic enzyme-treated starches were the Ca type like the intact starches and relative crystallinity was decreased.

  • PDF

Enhanced Expression and Substrate Specificity Changes of Barley $\alpha$-Amylase Isozyme 2 in E. coli by Substitution of the $42^{nd}$ Alanine Residue with Proline (42번째 alanine 잔기의 proline 치환에 의한 보리 $\alpha$-amylase isozyme 2의 대장균 내 발현 증가 및 기질특이성 변화)

  • Choi, Seung-Ho;Jang, Myoung-Uoon;Lee, Hong-Gyun;Svensson, Birte;Kim, Tae-Jip
    • Korean Journal of Food Science and Technology
    • /
    • v.42 no.2
    • /
    • pp.198-203
    • /
    • 2010
  • Although barley $\alpha$-amylase isozyme 1 (AMY1) and 2 (AMY2) share up to 80% of amino acid sequence identity, their enzymatic properties differ remarkably. In this study, the 42nd alanine residue of AMY2 was replaced with another random amino acid via saturation mutagenesis. Eight out of 370 recombinant E. coli cells showing enhanced starch-hydrolyzing activity were characterized as possessing the same proline residue instead of alanine. Even though the specific activity of AMY2-A42P is reduced to 81% of wild-type, its expression level and purification yield were enhanced by approximately 2 and 4 times that of AMY2, respectively. Characterization of its enzymatic properties confirmed that AMY2-A42P is similar to that of wild-type. However, its specificity to starch substrates is likely to be intermediate between AMY1 and AMY2.

Comparison of Enzyme Activity and Micronutrient Content in Powdered Raw Meal and Powdered Processed Meal

  • Chang, Hyun-Ki;Kang, Byung-Sun;Park, Sang-Soon;Lee, Keun-Bo;Han, Myung-Kyu
    • Preventive Nutrition and Food Science
    • /
    • v.8 no.2
    • /
    • pp.162-165
    • /
    • 2003
  • The enzyme activity and the micronutrient content of powdered raw meal (PRM) and powdered processed meal (PPM) were compared. PRM was made of freeze-dried cereals, fruits, and vegetables. PPM was made of the same materials as PRM, but with heat processing such as steaming, roasting and hot air drying. The activity of $\alpha$-amylase of PRM was higher than that of PPM. However there were no differences of the concentration of proximate components between PRM and PPM. The concentrations of vitamin A, C, folic acid, biotin, calcium, potassium, sodium and iron in PRM were higher than in PPM, but there were no differences in vitamins E, B$_1$, B$_2$, phosphorus and zinc. This research demonstrated that PRM retains greater nutritional value because there is higher enzyme activity and less loss of micronutrients during processing in PRM than in PPM.

Screening for α-amylase Inhibitory Activities of Woody Plants

  • Lee, Wi Young;Park, Young Ki;Park, So Young;Ahn, Jin Kwon
    • Journal of the Korean Wood Science and Technology
    • /
    • v.32 no.6
    • /
    • pp.36-42
    • /
    • 2004
  • Inhibitors of α-amylase are important for the treatment of diabetes and obesity. Using enzyme inhibitor's activity, ethanolic extracts of 87 species in 12 families were screened and compared their inhibitory effect on α-amylase, As a results, we can find that extracts of Distylium racemosum, Acer tegmentosum, Corylapsis veitchiana, Cornus walteri and Corylapsis spicata showed higher α-amylase inhibitory activities than the others and have potential possibility of using control agents for carbohydrate-dependent disease.

A New Raw-Starch-Digesting ${\alpha}$-Amylase: Production Under Solid-State Fermentation on Crude Millet and Biochemical Characterization

  • Maktouf, Sameh;Kamoun, Amel;Moulis, Claire;Remaud-Simeon, Magali;Ghribi, Dhouha;Chaabouni, Semia Ellouz
    • Journal of Microbiology and Biotechnology
    • /
    • v.23 no.4
    • /
    • pp.489-498
    • /
    • 2013
  • A new Bacillus strain degrading starch, named Bacillus sp. UEB-S, was isolated from a southern Tunisian area. Amylase production using solid-state fermentation on millet, an inexpensive and available agro-resource, was investigated. Response surface methodology was applied to establish the relationship between enzyme production and four variables: inoculum size, moisture-to-millet ratio, temperature, and fermentation duration. The maximum enzyme activity recovered was 680 U/g of dry substrate when using $1.38{\times}10^9$ CFU/g as inoculation level, 5.6:1 (ml/g) as moisture ratio (86%), for 4 days of cultivation at $37^{\circ}C$, which was in perfect agreement with the predicted model value. Amylase was purified by Q-Sepharose anion-exchange and Sephacryl S-200 gel filtration chromatography with a 14-fold increase in specific activity. Its molecular mass was estimated at 130 kDa. The enzyme showed maximal activity at pH 5 and $70^{\circ}C$, and efficiently hydrolyzed starch to yield glucose and maltose as end products. The enzyme proved its efficiency for digesting raw cereal below gelatinization temperature and, hence, its potentiality to be used in industrial processes.